Книга Математическое мышление, страница 6. Автор книги Джо Боулер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Математическое мышление»

Cтраница 6

Похвала доставляет удовольствие. Но когда человека хвалят за его личные качества («Ты такой умный!), а не за то, что он сделал («Отличная работа!»), у него создается впечатление, что его способности неизменны. Сказать ученику, что он умный, — значит обречь его на проблемы в будущем. Когда в школе и в жизни ученики терпят неудачу в решении многих задач (что, повторю, вполне естественно), они оценивают себя, решая, умны они или нет. Вместо того чтобы хвалить учеников за умственные способности или другое личное качество, лучше сказать так: «Замечательно, что ты этому научился» или «Ты действительно хорошо все продумал».

В американской системе образования распространено представление, что способности некоторых учеников не позволят им изучать математику определенного уровня сложности. Не так давно я столкнулась с шокирующим фактом: несколько учителей математики в старших классах написали в школьный совет письмо, где утверждали, что некоторые ученики не способны сдать тест по алгебре второго уровня; в частности, что нуждаются в упрощении программы некоторые малообеспеченные ученики из числа нацменьшинств. Письмо было опубликовано в местных газетах, а законодательное собрание штата использовало его в качестве примера, подтверждающего необходимость создания чартерных школ [7] (Noguchi, 2012). Письмо вызвало всеобщий шок, но, к сожалению, мнение о том, что некоторые ученики не способны освоить высшую математику, свойственно многим. Такой ограниченный и расистский подход может принимать разные формы и порой применяется с искренней заботой об учениках. Ведь многие считают, что дети готовы к изучению определенных математических тем только на определенной стадии своего развития. Но на самом деле готовность учеников зависит от накопленных ими практических знаний, а если они не готовы к изучению тех или иных тем, то могут подготовиться, получив необходимый опыт и поддержку и развив мышление роста. Не существует предопределенных темпов изучения математики, поэтому нельзя утверждать, что она недоступна тем, кто не достиг какого-то уровня возрастной или эмоциональной зрелости. Могут быть не готовы разве что те, кто пока не освоил необходимые базовые понятия. Остальное сформируется в процессе обучения.

Для многих из нас понимание важности математического мышления и формирование концепции и стратегий изменения мышления учеников подразумевает более тщательный подход к собственному обучению и отношениям с математикой. Многие учителя начальной школы, с которыми я работала (некоторые из них слушали мой онлайн-курс), рассказывали, что идеи о мозге, потенциале и мышлении роста, с которыми я их познакомила, полностью изменили их жизнь. Под влиянием этих идей у них сформировалось мышление роста в отношении математики, они начали заниматься ею с уверенностью и энтузиазмом и прививать такое отношение своим ученикам. Это особенно важно для учителей начальной школы, поскольку на определенном этапе многим из них говорили, что они не способны освоить математику или что эта дисциплина «не для них». Многие преподаватели математики сами боятся этой дисциплины. Результаты исследований, о которых я им рассказала, помогли им избавиться от страха и встать на другой путь. В ходе важного исследования Сайен Бейлок и ее коллеги пришли к выводу о наличии зависимости между уровнем негативных эмоций, которые учителя начальной школы испытывают по отношению к математике, и уровнем успеваемости девочек из их класса, но не мальчиков (Beilock, Gunderson, Ramirez, & Levine, 2009). Вероятно, это гендерное различие объясняется тем, что девочки отождествляют себя с учительницами, особенно в начальной школе. Они быстро подхватывают негативные сигналы в отношении математики, которые учителя зачастую подают из добрых побуждений, например: «Я знаю, что это очень трудно, но давай попробуем» или «Я никогда не любила математику». Кроме того, это исследование подчеркивает связь между сигналами, которые подают учителя, и успеваемостью их учеников.

Каков бы ни был уровень вашего мышления и знаний в этой области, я надеюсь, что представленные в этой книге данные и идеи помогут вам и вашим ученикам воспринимать математику (на любом уровне) как предмет, доступный для понимания и приносящий истинное удовольствие. В главе 2, главе 3, главе 4, главе 5, главе 6, главе 7 и главе 8 приведено много стратегий формирования мышления роста на занятиях математикой в школе и дома, которые я собрала за долгие годы исследований и практической работы в школах. Они помогут вам дать ученикам такой опыт изучения математики, который позволит им развить сильное математическое мышление.

Глава 2. Сила ошибок и трудностей

Я начала проводить семинары о преподавании математики с ориентацией на мышление роста вместе со студентами магистратуры из Стэнфорда (Сарой Селлинг, Кэти Сан и Холли Поуп), после того как директора калифорнийских школ рассказали мне о том, что их учителя прочли книги Кэрол Дуэк и полностью поддерживают изложенные там идеи, но не знают, что все это значит для преподавания математики. Первый семинар состоялся в кампусе Стэнфордского университета, в светлом и просторном центре Ли Ка-Шинга. Одна из самых ярких фраз Кэрол Дуэк поразила учителей: «Каждый раз, когда ученик делает ошибку в математической задаче, у него появляется новый синапс». Все мысленно ахнули. Ведь речь шла о силе и ценности ошибок — хотя большинство учеников считают, что ошибки означают отсутствие у них математических способностей или, того хуже, отсутствие интеллекта. Многие учителя годами говорили ученикам, как полезны ошибки: они свидетельствуют о том, что мы учимся. Но новые данные о мозге и ошибках указывают на нечто гораздо более важное.

Психолог Джейсон Мозер со своей группой изучил нейронные процессы в мозге человека в момент совершения ошибки (Moser et al., 2011). Они обнаружили нечто удивительное. Мозг может отреагировать на ошибку двумя способами. Ответная реакция первого типа под названием «вызванный ошибкой негативный импульс» (error-related negativity, ERN) — повышенная электрическая активность при конфликте между правильным ответом и неверным. И такая активность возникает независимо от того, знает ли человек об ошибке. Ответная реакция второго типа под названием «вызванный ошибкой позитивный импульс» (positivity error, Pe) — сигнал, отражающий осознанное внимание к ошибкам. Такая реакция имеет место, когда человек знает, что совершил ошибку, и уделяет ей осознанное внимание.

Когда я сказала учителям, что ошибки активируют мозг и стимулируют его рост, они отреагировали так: «Конечно, только при условии, что ученики исправляют ошибку, а потом продолжают решать задачу». Но на самом деле это не так. Результаты исследований свидетельствуют о том, что мозг активизируется независимо от того, знаем ли мы об ошибке. Когда учителя спрашивают меня, как это возможно, я говорю, что пока лучшее объяснение таково: мозг активизируется и растет, когда мы делаем ошибки, ведь в это время он напряженно работает.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация