Книга Математическое мышление, страница 49. Автор книги Джо Боулер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Математическое мышление»

Cтраница 49

Оценка для обучения

Несколько лет назад два профессора из Англии, Пол Блэк и Дилан Уильям, провели метаанализ результатов сотен научных исследований по теме оценки учеников. Они обнаружили нечто поразительное: настолько эффективную форму оценки, что, если бы все учителя начали применять ее, это повысило бы в стране успеваемость, измеряемую в ходе международных исследований, со среднего уровня до одного из первых пяти мест в рейтинге. (Сэр Пол Блэк и профессор Дилан Уильям были моими коллегами в Лондонском университете; Пол Блэк был также моим научным руководителем и наставником.) Блэк и Уильям установили: если бы учителя применяли метод, получивший название «оценка для обучения», это оказало бы гораздо большее положительное влияние по сравнению с другими инициативами в области образования, такими как сокращение численности учеников в классах (Black, Harrison, Lee, Marshall, & Wiliam, 2002; Black & Wiliam, 1998a, 1998b). Блэк и Уильям опубликовали свои выводы в небольшой брошюре, которая разошлась в Англии тиражом 20 тысяч экземпляров за первые несколько недель. Сейчас оценка для обучения получила во многих странах статус инициативы государственного уровня; этот метод опирается на огромную базу результатов научных исследований и доносит до учеников сигналы о мышлении роста.

Думаю, полезно привести здесь вводную информацию по теме. Существует два типа оценки — формативная и суммативная. Первая предоставляет информацию о протекании процесса обучения и представляет собой основу оценки для обучения. Она позволяет выяснить, на каком этапе находятся ученики, чтобы учителя и они сами могли определить, что им изучать далее. А цель суммативной оценки заключается в том, чтобы подвести итоги — составить заключительное мнение о достижениях учеников на конечном этапе обучения. Однако в США есть одна проблема: многие учителя используют суммативное оценивание в формативном режиме, выставляя итоговый балл или оценку еще в процессе изучения материала. На уроках математики учителя часто используют суммативные тесты раз в неделю, а затем переходят к следующей теме, не дожидаясь результатов. В случае оценки для обучения ученики осведомлены о том, что они уже знают, что им необходимо узнать и как преодолеть разрыв между этими двумя пунктами. Подросткам дают информацию об их способах обучения, ориентированных на данность и на рост, что способствует формированию математического мышления роста.

В период прохождения определенного курса очень важна формативная, а не суммативная оценка знаний учеников. Кроме того, подход оценки для обучения, который можно также считать оценкой для мышления роста, предлагает ряд стратегий и методов.

Один из важных принципов оценки для обучения состоит в том, что такой подход возлагает на учеников ответственность за их обучение. По сути, оценка для обучения сводится к предоставлению учащимся возможности стать самостоятельными, самим регулировать учебный процесс и определять, что им необходимо изучить в первую очередь, а также знать, как улучшить свои показатели. Оценку для обучения можно рассматривать как процесс, состоящий из трех частей: предоставление детям четкой информации о том, что они изучили; помощь ученикам в осознании того, где они сейчас и где должны быть; информирование учеников о способах преодоления разрыва между тем, где они есть и где должны быть (рис. 8.1).


Математическое мышление

Рис. 8.1. Оценка для обучения


Этот подход обозначается термином оценка для обучения, а не оценка обучения: информация, которую получают учителя и ученики благодаря ему, позволяет учителям сделать свое преподавание более эффективным и помогает ученикам работать с полной отдачей. Учителя, которые используют оценку для обучения, тратят меньше времени на то, чтобы рассказывать ученикам об их успеваемости, и уделяют больше времени созданию возможностей для того, чтобы дети взяли обучение под свой контроль. Учитель из Англии, который начал использовать этот метод, сказал, что это заставило его меньше сосредоточиваться на себе и больше на детях (Black et al., 2002). Он укрепил уверенность в себе как в учителе благодаря эффективным стратегиям создания возможностей для того, чтобы ученики сами продвигали вперед свое обучение.

Развитие самосознания и ответственности учеников

Самые сильные ученики — те, которые склонны к размышлениям, занимаются метапознанием (размышляют о том, что знают) и берут обучение под свой контроль (White & Frederiksen, 1998). У традиционных уроков математики есть один серьезный недостаток: ученики редко знают, что они изучают и где находятся в более широком контексте. Они сосредоточены на методах, которые им необходимо запомнить, но зачастую даже не знают, над какой областью работают. Я неоднократно присутствовала на уроках математики и часто останавливалась возле парт учеников, чтобы спросить их, над чем они работают. Часто ученики просто называют задание. Многие из моих диалогов с ними выглядели примерно так.

Дж. Б.: Над чем вы работаете?

Ученик: Над упражнением 2.

Дж. Б.: Так что же вы делаете на самом деле? Какой материал изучаете?

Ученик: Ой, извините, это вопрос 4.

Научное исследование, которое провели Барбара Уайт и Джон Фредериксен (White & Frederiksen, 1998), убедительно продемонстрировало важность размышлений. Эти исследователи изучили учеников 12 седьмых классов, изучающих физику. Они разделили учеников на экспериментальные и контрольные группы. Все изучали тему «Сила и движение». Ученики контрольных групп уделяли часть каждого урока обсуждению этой работы, а ученики экспериментальных групп на уроках занимались самооценкой и взаимным оцениванием в соответствии с критериями той дисциплины, которую изучали. Результаты исследования оказались весьма неожиданными. Ученики, у которых раньше была низкая успеваемость, добились самых больших успехов. Уделив какое-то время анализу профильных критериев и оценке своей работы в соответствии с ними, они начали добиваться таких же результатов, что и ученики с высоким уровнем успеваемости. Ученики средних классов получили даже более высокие результаты тестирования по курсу физики старшей школы, чем ученики, которые прошли углубленный курс физики. Исследователи пришли к выводу, что низкая успеваемость объясняется скорее не отсутствием у учеников соответствующих способностей, а тем, что раньше они просто не знали, на что им обращать внимание.

К сожалению, это касается многих. Крайне важно довести до сведения учеников, что именно им следует изучать. С одной стороны, это помогает им понять, что такое успех, а с другой — запускает процесс самоанализа, который оказывается бесценным инструментом обучения.


1. Самооценка

Самооценка и взаимная оценка — две основные стратегии, позволяющие ученикам повысить свою осведомленность о том, какую тему они изучают, а также о более широких путях ее исследования. В случае самооценки ученикам дают четкие утверждения по теме, которые они используют для размышлений о том, что они уже изучили и над чем им еще нужно поработать. Такие утверждения должны иметь математическое содержание, например: «Я понимаю разницу между средним и медианным значением и когда каждое из них следует использовать», а также описывать методы работы, например: «Я научился проявлять настойчивость в решении задач и продолжаю работать, даже если задачи трудные». Если ученики начинают каждый раздел работы с четких утверждений об изучаемой теме, они фокусируются на более широком контексте: узнают, что важно, над чем нужно поработать, чтобы улучшить свои знания. Исследования свидетельствуют: когда ученикам предлагают оценить свой уровень понимания, они не завышают и не занижают его (Black et al., 2002).

Вход
Поиск по сайту
Ищем:
Календарь
Навигация