Температура и скорость метаболизма
Clarke, A., and H.-A. Pörtner Temperature, metabolic power and the evolution of endothermy // Biological Reviews 85: 703–727 (2010).
Митохондриальные заболевания
Lane, N. Powerhouse of disease // Nature 440: 600–602 (2006).
Schon, E. A., DiMauro, S., and M. Hirano Human mitochondrial DNA: roles of inherited and somatic mutations // Nature Reviews Genetics 13: 878–890 (2012).
Wallace, D. C. A mitochondrial bioenergetic etiology of disease // Journal of Clinical Investigation 123: 1405–1412 (2013).
Zeviani, M, and V. Carelli Mitochondrial disorders // Current Opinion in Neurology 20: 564–571 (2007).
Цитоплазматическая мужская стерильность
Chen, L., and Y. G. Liu Male sterility and fertility restoration in crops // Annual Review Plant Biology 65: 579–606 (2014).
Innocenti, P., Morrow, E. H., and D. K. Dowling Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution // Science 332: 845–848 (2011).
Sabar, M., Gagliardi, D., Balk, J., and C. J. Leaver ORFB is a subunit of F1FO-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower // EMBO Reports 4: 381–386 (2003).
Правило Холдейна и птицы
Hill, G. E., and J. D. Johnson The mitonuclear compatibility hypothesis of sexual selection // Proc. R. Soc. B 280: 20131314 (2013).
Mittwoch, U. Phenotypic manifestations during the development of the dominant and default gonads in mammals and birds // Journal of Experimental Zoology 281: 466–471 (1998).
Что нужно для полета
Suarez, R. K. Oxygen and the upper limits to animal design and performance // Journal of Experimental Biology 201: 1065–1072 (1998).
Апоптотический порог
Lane, N. Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 (2014).
Lane, N. The costs of breathing // Science 334: 184–185 (2011).
Скрытый выкидыш на ранних стадиях у людей
Van Blerkom, J., Davis, P. W., and J. Lee ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer // Human Reproduction 10: 415–424 (1995).
Zinaman, M. J., O’Connor, J., Clegg, E. D., Selevan, S. G., and C. C. Brown Estimates of human fertility and pregnancy loss // Fertility and Sterility 65: 503–509 (1996).
Свободнорадикальная теория старения
Barja, G. Updating the mitochondrial free-radical theory of aging: an integrated view, key aspects, and confounding concepts // Antioxidants and Redox Signalling 19: 1420–1445 (2013).
Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., and W. O. Fenn Oxygen poisoning and X irradiation: a mechanism in common // Science 119: 623–626 (1954).
Harmann, D. Aging – a theory based on free-radical and radiation chemistry // Journal of Gerontology 11: 298–300 (1956).
Murphy, M. P. How mitochondria produce reactive oxygen species // Biochemical Journal 417: 1–13 (2009).
Проблемы свободнорадикальной теории старения
Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., and C. Gluud Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases // Cochrane Database of Systematic Reviews, doi: 10.1002/14651858. CD007176 (2008).
Gutteridge, J. M. C., and B. Halliwell Antioxidants: Molecules, medicines, and myths // Biochemical Biophysical Research Communications 393: 561–564 (2010).
Gnaiger, E., Mendez, G., and S. C. Hand High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia // Proceedings National Academy Sciences 97: 11080–11085 (2000).
Moyer, M. W. The myth of antioxidants // Scientific American 308: 62–67 (2013).
Свободнорадикальная сигнализация при старении
Lane, N. Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations // BioEssays 33: 860–869 (2011).
Moreno-Loshuertos, R., Acin-Perez, R., Fernandez-Silva, P., Movilla, N., Perez-Martos, A., de Cordoba S. R., Gallardo, M. E., and J. A. Enriquez Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants // Nature Genetics 38: 1261–1268 (2006).
Sobek, S., Rosa, I. D., Pommier, Y., et al. Negative regulation of mitochondrial transcrioption by mitochondrial topoisomerase I // Nucleic Acids Research 41: 9848–9857 (2013).
Свободные радикалы в контексте теории скорости жизни
Barja, G. Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies // Rejuvenation Research 10: 215–224 (2007).
Boveris, A., and B. Chance Mitochondrial generation of hydrogen peroxide – general properties and effect of hyperbaric oxygen // Biochemical Journal 134: 707–716 (1973).
Pearl, R. The Rate of Living. Being an Account of some Experimental Studies on the Biology of Life Duration. University of London Press, London (1928).
Свободные радикалы и болезни пожилого возраста
Desler, C., Marcker, M. L., Singh, K. K., and L. J. Rasmussen The importance of mitochondrial DNA in aging and cancer // Journal of Aging Research 2011: 407536 (2011).
Halliwell, B., and J. M. C. Gutteridge Free Radicals in Biology and Medicine. 4th edn. Oxford University Press, Oxford (2007).
He, Y., Wu, J., Dressman, D. C., et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells // Nature 464: 610–614 (2010).
Lagouge, M., and N.-G. Larsson The role of mitochondrial DNA mutations and free radicals in disease and ageing // Journal of Internal Medicine 273: 529–543 (2013).
Lane, N. A unifying view of aging and disease: the double agent theory // Journal of Theoretical Biology 225: 531–540 (2003).