На рисунке результат сравнения филогенетических схем, построенных для 50 бактерий и 50 архей по 48 универсальным и консервативным генам. Последовательности 48 генов были слиты в одну для увеличения статистической мощности (это обычный метод в филогенетике). По последовательности “супергена” построено дерево, демонстрирующее родственные связи внутри 100 видов. Построили деревья по каждому гену и каждое сравнили с “супергенным”. Для каждой ветви градиентом серого указано число деревьев, построенных по отдельным генам, которые совпадают с деревом, построенным по слитой последовательности. У основания дерева почти все 48 генов выдают то же дерево, что и слитая последовательность, указывая, что бактерии и археи действительно разошлись очень давно. На кончиках ветвей большинство деревьев, построенных по отдельным генам, также совпадают с деревом, построенным по слитой последовательности. Но мы не видим более глубоких ветвей внутри обеих групп: все построенные по отдельным генам деревья имеют иной порядок ветвления, нежели дерево, построенное по слитой последовательности. Это может быть и следствием горизонтального переноса генов, который перетасовал все точки ветвления, и размытием статистического сигнала за невообразимо долгие четыре миллиарда лет.
Мы уже сталкивались с этим (гл. 2). Cудя по всему, у Последнего всеобщего предка уже имелись белки и ДНК, а значит, в то время уже существовал универсальный генетический код, с ДНК считывались РНК-транскрипты, которые, в свою очередь, транслировались в белки на рибосомах – универсальных для всех клеток молекулярных фабриках, строящих белки. Механизмы, необходимые для прочтения ДНК и синтеза белков, задействуют множество молекул белков и РНК, общих для бактерий и архей. Структуры и последовательности этих белков и РНК не несут следов горизонтального переноса между группами – похоже, их механизмы транскрипции и трансляции разошлись на ранних этапах эволюции и затем развивались независимо. Движемся дальше. И бактерии, и археи используют энергию протонного градиента на мембране для синтеза АТФ. Фермент АТФ-синтаза – еще одна изумительная молекулярная машина, не уступающая по замысловатости рибосоме и, по-видимому, не менее древняя. Как и рибосомы, АТФ-синтазы универсальны и консервативны у всех живых организмов. Между бактериальными и архейными АТФ-синтазами есть незначительные структурные различия: по-видимому, эти АТФ-синтазы отделились от предковой АТФ-синтазы Последнего всеобщего предка, а их гены почти не переносились между доменами. Так что у Последнего всеобщего предка, судя по всему, наряду с рибосомами, РНК и ДНК, имелась и АТФ-синтаза. Кроме этого, у архей и бактерий есть несколько общих базовых биохимических путей, например пути синтеза аминокислот и некоторые реакции цикла Кребса, и они, по всей вероятности, присутствовали и у Последнего всеобщего предка. В общем, это почти все.
Что касается различий, то их чрезвычайно много. У архей и бактерий различается большинство ферментов, используемых в репликации ДНК. Хотя, казалось бы, что может иметь более фундаментальный характер для клетки? Разве что мембрана – но и мембраны у архей и бактерий различаются! То же самое можно сказать о клеточной стенке. У архей и бактерий принципиально различное строение обоих барьеров, отделяющих клетки от внешней среды. Почти не представляется возможным установить, чем вместо всего этого располагал Последний всеобщий предок. Различия можно перечислять и далее, но здесь мы остановимся. Из шести фундаментальных для клеток процессов (поток углерода, поток энергии, катализ, репликация ДНК, компартментализация и экскреция) у архей и бактерий сходны лишь первые три, да и то не во всем.
На этот счет существует несколько объяснений. Первое: все признаки у Последнего всеобщего предка могли быть продублированы, а впоследствии бактерии потеряли одну из копий, а археи – другую. Хотя это звучит довольно глупо, его нельзя необоснованно отвергать. Так, известно, что смесь бактериальных и архейных липидов способна образовывать устойчивые мембраны, и поэтому, возможно, у Последнего всеобщего предка имелись липиды обоих типов, а его потомки специализировались, утратив либо один, либо другой тип. Заметим, что этот сценарий может быть справедлив лишь для небольшого числа признаков, иначе возникает проблема, известная как геном Эдема. Если Последний всеобщий предок обладал всеми признаками, а его потомки специализировались, потеряв некоторые из них, то, следовательно, у Последнего всеобщего предка был чрезвычайно большой геном: гораздо больше, чем у современных прокариот. Я думаю, что предполагать, что сложное появилось прежде простого и что на каждую проблему было сразу два решения – все равно, что ставить телегу впереди лошади. К тому же совершенно непонятно, почему потомки Последнего всеобщего предка потеряли по половине всех его признаков. Мне кажется это неправдоподобным.
Вторая гипотеза гласит, что Последний всеобщий предок представлял собой совершенно обычную бактерию с мембраной, клеточной стенкой и репликацией ДНК бактериального типа. Позднее одна из групп его потомков – первые археи – заменила эти предковые структуры другими при адаптации к жизни в экстремальных условиях, например в гидротермальных источниках. Это общепринятое объяснение, которое тем не менее малоубедительно. Почему репликация ДНК у бактерий и архей различается, а процессы транскрипции и трансляции схожи? Если мембраны и клеточные стенки архей суть результат адаптации к жизни в горячих источниках, то почему живущие в аналогичных условиях экстремофильные бактерии сохранили свои мембраны и клеточные стенки и не поменяли их на мембраны и клеточные стенки архейного типа или что-либо иное? Бактерии и археи сосуществуют в одних экологических нишах, но при этом, несмотря на ГПГ, сохраняют фундаментальные различия. Кажется неправдоподобным, что все эти глубокие различия возникли в результате адаптации к жизни в конкретной нише и что все без исключения археи с тех пор зафиксировали эти признаки, хотя в других экологических нишах они совершенно не нужны.
Нам остается принять лишь один вариант. В природе Последнего всеобщего предка нет ничего парадоксального: он действительно использовал энергию ионного градиента для синтеза АТФ, у него была АТФ-синтаза, но при этом не было ни мембран современного типа, ни больших дыхательных комплексов, которые в современных клетках перекачивают протоны. Он действительно обладал ДНК, универсальным генетическим кодом, транскрипцией, трансляцией и рибосомами, но современных механизмов репликации ДНК у него еще не было. Невозможно вообразить, как такая странная клетка могла существовать в открытом океане, но все становится на свои места, если мы поместим ее в щелочной гидротермальный источник. Мы можем понять, как существовал Последний всеобщий предок, изучив, как теперь живут в этих источниках бактерии и археи – те из них, которые используют путь Вуда – Льюнгдаля: вероятно, первичный путь фиксации углерода, чрезвычайно напоминающий геохимические реакции геотермальных источников.
Трудная дорога к Последнему всеобщему предку
В живом мире существует всего шесть путей фиксации углерода – превращения неорганических молекул CO2 в органические. Пять путей довольно сложны, и для их осуществления требуется много энергии – например энергии Солнца (в случае фотосинтеза). Есть еще одна причина, в силу которой Последний всеобщий предок не мог пользоваться фотосинтезом. Это цикл Кальвина – биохимический путь, в ходе которого CO2 преобразуется в сахара. Он встречается лишь у фотосинтетических бактерий
[54] (и растений, которые заполучили эти бактерии в качестве хлоропластов). Это означает, что цикл Кальвина вряд ли мог быть у Всеобщего предка. Если последний мог осуществлять фотосинтез, то эта способность должна была исчезнуть у всех архей – а терять такое полезное приспособление, конечно, глупо
[55]. Гораздо вероятнее, что цикл Кальвина появился позднее, одновременно с фотосинтезом, и лишь у бактерий. То же самое можно сказать об остальных путях фиксации углерода, за исключением одного. Единственный способ фиксации углерода, который встречается и у бактерий, и у архей
[56] – восстановительный путь ацетил-кофермента А (путь Вуда – Льюнгдаля).