Книга Вопрос жизни. Энергия, эволюция и происхождение сложности, страница 11. Автор книги Лейн Николас

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Вопрос жизни. Энергия, эволюция и происхождение сложности»

Cтраница 11

Эта история разворачивается вокруг крупной (более 1 тыс. видов) группы простых одноклеточных эукариот, у которых нет митохондрий. Эту группу когда-то считали примитивным “недостающим звеном” между бактериями и более сложными эукариотами, а именно – той самой промежуточной формой, существование которой предполагает теория серийных эндосимбиозов. К этой группе относится, например, пренеприятный кишечный паразит лямблия (Giardia). По словам Эдмунда Юна, она напоминает злобную слезинку (рис. 4). Ее образ жизни вполне соответствует внешнему виду: лямблия вызывает диарею. У нее не одно ядро, а целых два: казалось бы, не должно возникать сомнений в ее “эукариотичности”. Однако у лямблии нет некоторых других базовых эукариотических свойств (особенно заметно отсутствие митохондрий). В середине 80-х годов известный сокрушитель устоев Томас Кавалье-Смит утверждал, что лямблия и другие относительно простые эукариоты появились в самый ранний период эукариотической эволюции, еще до митохондрий, и сохранились в таком виде до наших дней. Хотя Кавалье-Смит и принял тот факт, что митохондрии произошли от бактериальных эндосимбионтов, у него не нашлось времени на детальное изучение теории серийных эндосимбиозов Маргулис. Вместо этого он представил (и до сих пор держится этого представления) самых древних эукариот в виде примитивных фагоцитов, вроде современных амеб, которые питаются, заглатывая другие клетки. Кавалье-Смит утверждает, что клетки, которые приобрели митохондрии, уже имели ядро, динамический внутренний скелет (который позволял им изменять форму и передвигаться), белковые механизмы (позволяющие загружать пищевые частицы внутрь клетки и перемещать их внутри), специализированные компартменты для внутриклеточного переваривания пищи и т. д. Приобретение митохондрий определенно пошло этим клеткам на пользу. Если представить, что клетка сродни автомобилю, то это нововведение сопоставимо с установкой турбокомпрессора. Но даже если машина начинает ездить быстрее, ее устройство в основе остается прежним: двигатель, коробка передач, тормоза, турбина лишь придает энергии. То же самое и примитивные фагоциты Кавалье-Смита. Все части механизма уже были на месте, за исключением митохондрий, которые снабдили клетку большим количеством энергии. Если и существует взгляд на происхождение эукариот, который можно назвать каноническим, – вот он.

С легкой руки Кавалье-Смита этих примитивных эукариот стали называть архезоями, чтобы подчеркнуть их предполагаемое древнее происхождение (рис. 4). Поскольку некоторые архезои паразитируют на человеке, вызывая болезни, их биохимия и структуры геномов представляют интерес для медицины. Исследования в этой области хорошо финансируются, поэтому мы знаем об этих существах чрезвычайно много. За 20 лет изучения геномных последовательностей и биохимии архезоев стало ясно, что на самом деле они вовсе не промежуточное звено между бактериями и эукариотами. Более того, они сами произошли от сложных эукариот, которые некогда обладали всеми компонентами эукариотических клеток, в том числе митохондриями. При переходе к паразитизму архезои утратили эту сложность. Но все они сохранили структуры, которые, как сейчас известно, являют собой упростившиеся митохондрии: гидрогеносомы или митосомы. Внешне эти структуры не похожи на митохондрии (правда, и те, и другие покрыты двумя мембранами, поэтому считалось, что митохондрий у архезоев нет), но из совокупности молекулярных и филогенетических данных точно следует, что гидрогеносомы и митосомы произошли от митохондрий, а не от других бактериальных эндосимбионтов (как считала Маргулис). Таким образом, у всех эукариот имеются либо митохондрии, либо произошедшие от них органеллы. Напрашивается вывод: митохондрии имелись уже у последнего общего предка эукариот, как в 1998 году предсказал Билл Мартин (гл. 1). Тот факт, что у эукариот имеются митохондрии, может показаться тривиальным, но в сочетании со знанием о том, как распространяются геномные последовательности по огромному микробному миру, он когда-то перевернул наше понимание эукариотической эволюции.


Вопрос жизни. Энергия, эволюция и происхождение сложности

Рис. 4. Архезои – знаменитое якобы недостающее звено.

А. Устаревшая, вводящая в заблуждение филогенетическая схема, построенная на основе сравнения рибосомальной РНК. Она включает три домена: бактерии, археи и эукариоты. Перемычка № 1 обозначает предполагаемое раннее возникновение ядра, а № 2 – предполагаемое приобретение митохондрий, произошедшее позднее. Три группы, ответвившиеся в промежутке между полосками – это архезои, считавшиеся примитивными эукариотами, которые еще не приобрели митохондрии (к ним относится, например, лямблия).

Б. Теперь мы знаем, что архезои вовсе не примитивны: они произошли от организмов, у которых уже имелись митохондрии. В действительности ответвление архезоев произошло от главной части эукариотического дерева. (Я – ядро, ЭР – эндоплазматический ретикулум; В – вакуоль; Ж – жгутик.)


Известно, что все эукариоты восходят к общему предку, который лишь однажды возник в ходе эволюции. Абсолютно все эукариоты (растения, животные, водоросли, грибы, протисты) восходят к общему предку. Иными словами, это монофилетическая группа. Растения, животные и грибы произошли не от разных групп бактерий, а от одной популяции эукариотических клеток со сложной морфологией, единожды появившихся в истории Земли. Общий предок по определению может быть лишь один. В нашем случае под общим предком подразумевается не одна клетка, а одна популяция идентичных клеток. Само по себе это не означает, что появление сложных клеток – очень редкое событие. Вполне возможно, они возникали несколько раз, но выжили потомки лишь одной группы, а все остальные по каким-либо причинам вымерли. Я докажу, что к эукариотам это не относится, но сначала мы должны рассмотреть строение эукариотических клеток.

От общего предка эукариот довольно скоро отделилось пять “супергрупп” организмов с разной клеточной морфологией. Большинство этих групп неизвестны даже людям с классическим биологическим образованием. Примеры таких групп – Unikonta (к ним относятся животные и грибы), Excavata, Chromalveolata и Plantae (последние включают наземные растения и водоросли). Важны два момента. Во-первых, генетическое разнообразие внутри каждой группы гораздо выше, чем между предками этих групп (рис. 5). Это наводит на мысль, что в момент формирования эукариотических супергрупп происходила “взрывная” эволюция, точнее – монофилетическая радиация, которая могла быть связана с преодолением структурных ограничений. Во-вторых, общий предок эукариот уже был чрезвычайно сложной клеткой. Сравнивая признаки каждой супергруппы эукариот, можно попытаться восстановить облик общего предка. Признаки, присутствующие почти у всех видов внутри всех супергрупп, вероятнее всего, унаследованы от него. Признаки, которые встречаются лишь в одной-двух группах, скорее всего, приобретены ими независимо и позднее. Хорошая иллюстрация последнего варианта – хлоропласты, которые встречаются только у растений и хромальвеолят. Они возникли в результате эндосимбиоза, но у общего предка эукариот их не было.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация