Несмотря на это, производители некоторых магнитных устройств заявляют, что их продукция обладает свойствами притягивающего луча. Одно из подобных устройств сейчас исследует НАСА совместно с Arx Pax – компанией, создавшей ховерборд Hendo.
Цель их работы – использование технологии архитектуры магнитных полей, разработанной Arx Pax, «для создания устройства для манипуляции и соединения микр о спутников на расстоянии». Это устрой ство сгенерирует нечто вроде магнитной веревки между десятисантиметровыми кубсатами
[66]. Но расстояние, на котором она будет работать, исчисляется лишь сантиметрами.
Таким образом, магниты не очень подходят для создания притягивающего луча; к тому же они действуют только на магнитные материалы. Но если мы ищем другую невидимую силу, притягивающую любой объект, то стоит обратить внимание на гравитацию. Может быть, есть какая-нибудь технология, способная воспроизвести ее эффект?
Притяжение гравитации
Если верить канону «Звёздных войн», притягивающий луч действует путем манипуляции гравитационными полями.
Звезда Смерти и другие космические корабли в мире «Звёздных войн» оснащены генераторами искусственной гравитации, которые помогают удержать экипаж и грузы от полетов внутри корабля. Возможно, притягивающий луч – всего лишь вариация этой технологии. Что об этом думает современная наука?
В общей теории относительности гравитация является искривлением пространства-времени, вызванным присутствием материи или энергии. Чем больше материи, тем больше искривление и, соответственно, сила гравитации.
В случае с гравитацией чем больше масса – тем сильнее гравитационное поле. С точки зрения массы вещества, необходимой для создания притяжения, гравитация значительно проигрывает магнетизму.
Но притягивающий луч, действующий на основе гравитации, может искривлять пространство-время перед объектом, заставляя его падать в направлении искривления. Проблема в том, что, насколько нам известно на сегодняшний день, гравитацию нельзя направить – она действует во все стороны. Поэтому, если один корабль направит подобный луч на другой, то оба корабля начнут падать в сторону искривления пространства.
Таким образом, гравитация – тоже не самое подходящее решение, если только не будет найден способ контролировать ее и направлять в определенную сторону.
Что еще может предложить современная наука?
Настоящие притягивающие лучи
Как насчет технологии, хватающей предметы с помощью звуковых волн?
Это нечто вроде акустической левитации, способной передвигать небольшие объекты, жидкости и живых существ в воздухе и в воде. Это не совсем луч, но вы, вероятно, уже увидели главную проблему этого способа. Подобная технология не сможет работать в вакууме космоса. Зато ее можно использовать внутри корабля.
Один из разработчиков этой технологии – Асьер Марсо из Университета Бристоля – говорит, что «звуку нужна среда для распространения, так что в космосе подобная манипуляция возможна лишь внутри корабля. Но акустические силы достаточно слабые, поэтому использовать технологию можно будет разве что для удержания воды от растекания».
Хотя сегодня прибор может захватывать лишь очень маленькие объекты и применим, скорее, на микроскопическом уровне – это все равно притягивающий луч. Радиус его действия составляет 7 см, но может варьироваться в зависимости от мощности устройства. Марсо надеется, что в будущем он с коллегами смогут воздействовать на предметы на расстоянии до километра, используя не только звук, но и, например, воздушные вихри.
А есть ли у нас технология притягивающего луча, способная действовать в вакууме?
Исследователи из Университета Сент-Эндрюса разработали притягивающий луч для перемещения микроскопических частиц, основанный на работе света. Луч света использует тот же эффект, что и фотоны, толкающие солнечный парус. Однако он действует в обратном направлении – притягивая частицы.
Луч работает как в жидкостях, так и в вакууме. Проблема в том, что данный способ нельзя применить на больших объектах, так как в ходе процесса происходит передача энергии. Объем энергии, необходимой для перемещения большого объекта, настолько велик, что очень сильно нагреет объект. Возможно, таким способом можно будет передвинуть пылинки на поверхности «Тысячелетнего сокола», но не более того.
В 2011 году группа ученых из НАСА под руководством Пола Стисли провела анализ различных технологий притягивающего луча, основанных на лазере, таких как оптический пинцет
[67] и луч Бесселя
[68]. По результатам анализа более 700 проектов группа посчитала перспективными лишь три из рассмотренных технологий, получившие названия соленоидные лучи, вихревая труба и оптический конвейер.
Пока что все эти технологии продемонстрировали свои способности лишь на объектах размером в доли микрометра. Но не отчаивайтесь – все только начинается.
Возможно, нам еще далеко до притягивающих лучей, как в «Звёздных войнах», но у нас уже есть технологии, позволяющие манипулировать объектами на расстоянии, что еще недавно было возможно лишь в фантастике. Ученые вновь приняли вызов фантастов, претворяя в жизнь самые смелые проекты, созданные воображением.
А на самом деле можно увернуться от выстрела из бластера или отразить его?
Вы только что прибыли в Облачный город, и старый друг Лэндо приглашает вас перекусить. Вы следуете за ним в другую комнату где обнаруживаете поджидающего вас Дарта Вейдера. Вы молниеносно выхватываете бластер и несколько раз стреляете в него. Но Вейдер спокоен.
Он отражает ваши выстрелы… руками.
Очевидно, Вейдер глубоко познал Силу, и отражение выстрелов руками выглядит впечатляюще, но этим искусством обладают все джедаи и ситхи.
А может ли обычный человек вроде нас с вами уклониться от выстрела из бластера?
Скорость бластерного разряда
Бластерные разряды часто вспыхивают на экране, когда мы смотрим «Звёздные войны», но, чтобы понять, можно ли от них увернуться, для начала нам надо выяснить их скорость.
Канон «Звёздных войн» описывает разряд, выпущенный бластером, как пучок световой энергии. Но это не луч света. Это нечто вроде стрелы плазменной энергии, созданной из богатого энергией газа. Таким образом, скорость пучков медленнее скорости света.