Так начинался анализ. Он рос из любопытства геометров и разочарования в округлости. Круги, сферы и прочие изогнутые формы были Гималаями той эпохи. И не потому, что они ставили важные практические задачи, по крайней мере поначалу. Дело было в жажде приключений, характерной для человеческого духа. Подобно покорителям Эвереста, геометры хотели разобраться с кривыми просто потому, потому что они есть
[23].
Прорыв произошел благодаря идее, что кривые на самом деле состоят из прямых частей. Хотя это неправда, но можно сделать вид, что это так. Загвоздка была в том, что тогда эти части должны быть бесконечно малы и бесконечно многочисленны. Благодаря такой фантастической концепции родилось интегральное исчисление. Это самое раннее применение «принципа бесконечности». История его развития растянется у нас на несколько глав, но его суть в зародышевой форме мы можем изложить уже сейчас: если очень сильно увеличить окружность (или другую гладкую кривую), то часть, которую мы увидим под микроскопом, будет выглядеть как прямая линия. Так что в принципе можно вычислить длину кривой, сложив длины всех маленьких прямых кусочков. Чтобы выяснить, как именно это делать – нелегкая задача, – понадобились многовековые усилия величайших математиков человечества. В итоге коллективно (а иногда и в результате ожесточенного соперничества) они продвинулись по пути к решению загадки кривых. Побочными результатами, как мы увидим в главе 2, стала математика, используемая для рисования реалистично выглядящих волос, одежды и лиц персонажей в компьютерной анимации и вычисления, необходимые пластическим хирургам для выполнения операций на лице виртуальных пациентов, прежде чем оперировать реальных.
Поиски решения загадки кривых достигли апогея, когда стало ясно, что кривые – это нечто большее, чем просто геометрические отклонения. Они были ключом к разгадке тайн природы. Они естественным образом возникали в параболической дуге летящего мяча, в эллиптической орбите Марса, движущегося вокруг Солнца, и в выпуклой форме линзы, которая могла преломлять и фокусировать свет в нужном месте, без чего было бы невозможно бурное развитие микроскопов и телескопов в Европе позднего Возрождения.
Так началась вторая великая одержимость: увлечение тайнами движения на Земле и в Солнечной системе. С помощью наблюдений и замысловатых экспериментов ученые обнаружили интересные численные закономерности для простейших двигающихся объектов. Они измеряли колебания маятника, определяли ускорение шара, катящегося по наклонной плоскости, и наносили на карту движение небесных тел. Обнаруженные закономерности восхищали их: действительно, Иоганн Кеплер впал в состояние описанного им «священного помешательства», обнаружив законы движения планет, поскольку эти закономерности показались ему признаком работы Бога. С более светской точки зрения такие законы подкрепляли утверждение, что природа глубоко «математична», как и говорили пифагорейцы. Единственная загвоздка – никто не мог объяснить эти новые чудесные закономерности, по крайней мере с помощью существовавших в то время форм математики. Арифметика и геометрия не справлялись с этой задачей даже в руках великих математиков.
Проблема заключалась в том, что движение не было равномерным. Шар, катившийся по наклонной плоскости, непрерывно менял скорость, а планета, вращающаяся вокруг Солнца, все время меняла направление движения. Что еще хуже, планеты двигались быстрее, когда находились ближе к Солнцу, и медленнее, когда находились от него вдалеке. Не было никакого известного способа разобраться с непрерывно изменяющимся движением. У математиков имелась теория для самого тривиального вида движения – перемещения с постоянной скоростью, когда расстояние вычисляется путем произведения скорости на время. Но когда скорость меняется, причем непрерывно, дела обстоят совершенно иначе. Движение оказалось таким же Эверестом, как и кривые.
Как мы увидим в середине книги, очередные крупные достижения анализа выросли из стремления разгадать тайну движения. Как и в случае кривых, на помощь пришел принцип бесконечности. На этот раз пришлось притвориться, что движение с переменной скоростью состоит из бесконечно большого числа бесконечно коротких движений с постоянной скоростью. Чтобы представить, что это значит, вообразите, что вы едете в машине с нервным водителем, заставляющим автомобиль двигаться рывками. Вы с беспокойством смотрите на спидометр, стрелка которого дергается вверх и вниз при каждом рывке машины. Но даже самый резкий водитель не сможет сильно сдвинуть стрелку за миллисекунду, а уж за более короткий, то есть бесконечно малый интервал, – и подавно. Стрелка просто замрет на месте. Никто не способен так быстро нажать на педаль газа.
Эти идеи объединились в более молодой части анализа – дифференциальном исчислении. Это было именно то, что требовалось для работы с бесконечно малыми изменениями времени и расстояния, которые возникали при изучении постоянно меняющегося движения, равно как и для работы с бесконечно малыми прямыми кусочками кривых, появлявшимися в аналитической геометрии – новомодном исследовании кривых, определенных с помощью алгебраических уравнений, – популярной в первой половине 1600-х годов. Как мы увидим позже, одно время алгебра была настоящим поветрием. Ее популярность была благом для всех областей математики, включая геометрию, но она же создала буйные джунгли новых кривых, которые следовало изучить. Таким образом пересеклись загадки кривых и движения. В середине 1600-х они оказались в центре анализа, сталкиваясь друг с другом и создавая математический хаос и неразбериху. Расцвет анализа в этих суматошных условиях не обходился без бурных дискуссий. Некоторые математики критиковали анализ за чересчур свободное обращение с бесконечностью. Другие высмеивали алгебру как простой набор символов. Сопровождаемый всеми этими препирательствами прогресс анализа был медленным и нестабильным.
А потом в одно прекрасное Рождество родился ребенок
[24]. Этот юный мессия анализа был невероятным героем. Рожденный недоношенным, без отца и брошенный матерью в возрасте трех лет, этот одинокий мальчик с темными мыслями превратился в скрытного подозрительного юношу. И тем не менее он (а это, как вы уже, наверное, догадались, был Исаак Ньютон) оставил в мире такой заметный след, как никто ни до, ни после него.
Сначала он нашел «святой Грааль» анализа, открыв, как снова сложить кусочки кривой, причем легко, быстро и систематически. Объединив символы алгебры с мощью бесконечности, он нашел способ представить любую кривую в виде суммы бесконечного множества более простых кривых, которые описываются различными степенями x, например x2, x3, x4 и так далее. Имея такие ингредиенты, он мог приготовить любую желаемую кривую – положив щепотку x, чуточку x2 и полную столовую ложку x3. Это было похоже на рецепт и набор специй, мясную лавку и огород – и все в одном флаконе. С его помощью Ньютон мог решить любую задачу о формах и движениях.