Книга Бесконечная сила. Как математический анализ раскрывает тайны вселенной, страница 34. Автор книги Стивен Строгац

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Бесконечная сила. Как математический анализ раскрывает тайны вселенной»

Cтраница 34

Сегодня мы используем координатную плоскость для построения графиков зависимости между переменными. Например, рассмотрим зависимость количества калорий от моих порой позорных привычек в еде. Иногда я позволяю себе пару кусочков хлеба с корицей и изюмом на завтрак. На упаковке написано, что каждый ломтик содержит колоссальные 200 калорий [154]. (Если бы я хотел есть более здоровую пищу, то мог бы довольствоваться зерновым хлебом, который покупает жена, в нем всего 130 калорий, но в нашем примере я предпочитаю хлеб с корицей и изюмом, потому что 200 – более удобное число с математической точки зрения, пусть и худшее в смысле калорийности, чем 130.)

Вот график числа калорий, которые я получаю вместе с одним, двумя или тремя ломтиками хлеба.


Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Поскольку в каждом кусочке 200 калорий, то в двух кусках их будет 400, а в трех – 600. Если нанести эти три точки на график, все они окажутся на прямой линии, то есть у нас получается линейная зависимость между числом съеденных кусков и количеством калорий. Если мы обозначим буквой x число кусков, а буквой y – число употребленных калорий, то линейную зависимость можно записать в виде y = 200x. Эту формулу можно использовать для любого количества хлеба. Например, полтора ломтика дадут 300 калорий, и соответствующая точка будет лежать на той же построенной прямой. Поэтому имеет смысл соединять все точки на таких графиках.

Я понимаю, что все это может показаться очевидным, но тем не менее хотел подчеркнуть, что в прошлом это было очевидно не всегда – ведь кто-то же должен был придумать изображать зависимость на такой абстрактной диаграмме. Это не всегда очевидно и сегодня, по крайней мере для детей при их первом знакомстве с подобными графиками.

Здесь есть определенный творческий подход. Прежде всего представление употребления пищи в виде картинки. Это требует гибкости ума. В калориях нет ничего графического. На графике нет реалистичного изображения изюминок и завитков корицы, вложенных в хлеб. Наш график – абстракция, но он дает возможность взаимодействовать различным областям математики: области чисел, таких как число калорий и ломтиков хлеба, области отношений вроде y = 200x и области форм, где есть две перпендикулярные оси, а точки лежат на прямой линии. Благодаря этому слиянию идей скромная диаграмма сочетает числа, зависимости и формы, позволяя объединять арифметику, алгебру и геометрию. Различные ветви математики столетиями работали по отдельности, а теперь слились воедино. (Вспомните, что древние греки ставили геометрию выше арифметики и алгебры и не позволяли им смешиваться, по крайней мере не часто.)

Еще одно слияние относится к горизонтальной и вертикальной осям. Их часто называют осью x и осью y – по переменным, которыми мы их обычно обозначаем. Эти оси – числовые прямые. Подумайте об этом термине: числовые прямые. Числа представлены в виде точек на какой-то прямой. Арифметика соединена с геометрией, причем еще до того, как мы наносим какие-то данные!

Древние греки просто бы истошно орали при таком нарушении протокола. Для них числа означали исключительно дискретные количества, например целые числа и дроби. Напротив, непрерывные количества, такие как длина какой-нибудь линии, считались величинами – принципиально другими сущностями, отличными от чисел. Таким образом, почти два тысячелетия от Архимеда до начала XVII века числа не рассматривались как эквивалент континуума точек на прямой. В этом смысле идея числовой прямой была радикальным нарушением. Сегодня мы даже не задумываемся об этом и ждем, что ученики начальной школы поймут, что числа могут быть наглядно представлены таким образом.

С точки зрения древних греков здесь имеется еще одно богохульство – график полностью пренебрегает сравнением подобного с подобным, скажем яблок с яблоками или калорий с калориями. Вместо этого он показывает ломтики хлеба на одной оси и калории на другой. Их нельзя сравнивать напрямую, и тем не менее мы, не моргнув глазом, делаем это с помощью графиков. Мы просто преобразуем калории и ломтики в числа, означающие действительные числа, бесконечные десятичные дроби, универсальную валюту современной математики. Греки проводили четкие различия между длинами, площадями и объемами, но для нас это просто действительные числа.

Уравнения как кривые

Безусловно, Ферма и Декарт никогда не использовали координатную плоскость для изучения таких осязаемых вещей, как хлеб с корицей и изюмом. Для них она была инструментом изучения чистой геометрии.

Работая независимо друг от друга, каждый из них заметил, что любое линейное уравнение (то есть уравнение, где переменные x и y появляются только в первой степени) дает прямую линию на координатной плоскости. Такая связь между линейными уравнениями и прямыми предполагала возможную связь между нелинейными уравнениями и кривыми. В линейное уравнение вроде y = 200x переменные x и y входят в первой степени, а не возводятся во вторую, третью и любую более высокую степень. Ферма и Декарт поняли, что в ту же игру можно играть с другими степенями и уравнениями. Они могли бы составить любое уравнение, какое пожелают, сделать с x и y все что угодно – возвести одну переменную в квадрат, а другую в куб, перемножить их, сложить, да все что заблагорассудится, – а затем интерпретировать результат как кривую. С определенным везением она может оказаться интересной, возможно, даже такой, которую никто никогда не представлял, а Архимед никогда не изучал. Любое уравнение с x и y становилось новым приключением. Одновременно изменялась точка зрения: вместо того чтобы смотреть на кривую, вы начинали с уравнения и смотрели, какого рода кривую оно дает. Пересадите геометрию на заднее сиденье и дайте управлять алгебре.

Ферма и Декарт начали с рассмотрения квадратных уравнений. В них, кроме констант (например, 200) или линейных членов x и x2, должны быть переменные во второй степени, то есть квадратичные члены, такие как y, xy или y2. Возведение в квадрат традиционно интерпретировалось как поиск площади, то есть x2 означало площадь квадрата со стороной x. В древности площадь считалась величиной, принципиально отличной от длины или объема. Однако для Ферма и Декарта x2 было всего лишь еще одним действительным числом; это означало, что его можно отобразить на числовой прямой – ровно так же, как x, x3 или любую иную степень x.

Сегодня предполагается, что даже школьники умеют строить графики уравнений наподобие y = x2, и соответствующая кривая оказывается параболой. Примечательно, что все уравнения, содержащие квадратичные члены по x и y, но не включающие члены более высоких степеней, дают кривые только четырех возможных типов: параболы, эллипсы, гиперболы и окружности. Это все. (Если не считать некоторых вырожденных случаев, когда появляются прямые, точки или графика нет вообще, но эти редкие странности мы можем смело игнорировать.) Например, квадратное уравнение xy = 1 дает гиперболу, x2 + y2 = 4 – окружность, а x2 + 2y2 = 4 – эллипс. Даже такая страшная на вид зависимость, как x2 + 2xy + 2y2 + x + 3y = 2 должна быть одним из четырех вышеуказанных вариантов. Оказывается, это парабола.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация