Книга Бесконечная сила. Как математический анализ раскрывает тайны вселенной, страница 11. Автор книги Стивен Строгац

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Бесконечная сила. Как математический анализ раскрывает тайны вселенной»

Cтраница 11

Мы не знаем, что именно пытался показать своими рассуждениями Зенон, поскольку ни одно из его сочинений не сохранилось, если они вообще существовали. Его рассуждения дошли до нас в передаче Платона и Аристотеля, которые в основном пытались их опровергнуть. В их пересказе Зенон пытался доказать, что изменения невозможны. Наши чувства говорят нам иное, но они нас обманывают. Изменение, согласно Зенону, – это иллюзия.

Особенно известны три парадокса Зенона [34], [35]. Первый, «Дихотомия», аналогичен загадке стены, но гораздо печальнее. Он гласит, что вам не удастся даже сдвинуться с места, поскольку для того, чтобы сделать первый шаг, нужно сделать полшага, а перед этим – четверть шага и так далее. Так что вы не только не сможете добраться до стены, но даже не сможете начать движение.

Это блестящий парадокс. Кто бы мог подумать, что для шага требуется выполнить бесконечно много подзадач? Хуже того, нет самой первой задачи, которую надо выполнить. Она не может состоять в том, что нужно сделать полшага, потому что до этого пришлось бы сделать четверть шага, а до того – восьмую часть шага и так далее. Если вы думаете, что у вас много дел перед завтраком, представьте, что вам нужно закончить бесконечное количество дел, прежде чем добраться до кухни.

Другой парадокс, названный «Ахиллес и черепаха», утверждает, что быстрый бегун (Ахиллес) никогда не догонит медленного бегуна (черепаху), если у того будет фора.


Бесконечная сила. Как математический анализ раскрывает тайны вселенной

К тому времени, когда Ахиллес достигнет места, откуда отправилась в путь черепаха, она успеет немного продвинуться вперед. К тому моменту, когда Ахиллес достигнет этого нового места, черепаха снова продвинется, и так далее. Поскольку все мы считаем, что быстрый бегун может обогнать медленного, то либо наши чувства нас обманывают, либо что-то не так с нашими рассуждениями о движении, пространстве и времени.

В этих первых двух парадоксах Зенон, похоже, возражал против принципиальной непрерывности пространства и времени, то есть против того, что их можно делить до бесконечности. Его умной стратегией было применение доказательства от противного (некоторые утверждают, что он его и изобрел), известное среди юристов и логиков как reductio ad absurdum (доведение до абсурда). В обоих парадоксах Зенон предположил непрерывность пространства и времени, а затем вывел из этого допущения противоречие, поэтому предположение о непрерывности должно быть ложным. Анализ основан именно на этом предположении, а потому ставки тут весьма высоки. Он опровергает Зенона, демонстрируя ошибки в его рассуждениях.

Например, вот как анализ справляется с Ахиллесом и черепахой. Допустим, что черепаха стартует в 10 метрах перед Ахиллесом, а Ахиллес бежит вдесятеро быстрее своей соперницы – скажем, 10 метров в секунду против 1 метра в секунду. Таким образом, за 1 секунду Ахиллес отыгрывает 10-метровую фору черепахи. За это время черепаха продвинется на 1 метр. Чтобы покрыть это расстояние, Ахиллесу понадобится еще 0,1 секунды. За это время черепаха преодолеет еще 0,1 метра. Продолжая рассуждать в том же духе, мы видим, что последовательные отрезки времени, которые нужны Ахиллесу, чтобы покрыть разделяющее расстояние, складываются в бесконечный ряд:

1 + 0,1 + 0,01 + 0,001 + … = 1,111… секунд.

Если записать это число в виде обыкновенной дроби, получим 10/9 секунды. Именно столько времени понадобится быстроногому герою мифа, чтобы догнать черепаху. И хотя Зенон был прав в том, что Ахиллесу требуется выполнить бесконечное количество задач, в этом нет ничего парадоксального. Как показывает математика, он может справиться с ними за конечный промежуток времени.

Такое рассуждение использует анализ. Мы просто суммируем бесконечный ряд и вычисляем предельное значение, как делали при обсуждении, почему 0,333… = 1/3. Всякий раз, когда мы работаем с бесконечной записью десятичных чисел, мы применяем анализ (хотя большинство людей отнеслись бы к этому как к школьной арифметике).

Кстати, анализ – не единственный способ справиться с такой задачей. Мы могли бы использовать алгебру. Для этого нам нужно выяснить, где в произвольный момент времени t находится на трассе каждый из соперников. Пусть Ахиллес начинает в нулевой точке. Поскольку он бежит со скоростью 10 метров в секунду, а расстояние равно произведению скорости на время, то в момент t он пробежит 10 × t. Что касается черепахи, то она начинает двигаться в точке 10 и перемещается со скоростью 1 метр в секунду, поэтому в момент t она находится в точке 10 + 1 × t. Чтобы определить время, когда герой настигнет соперницу, нужно приравнять эти два выражения, поскольку с алгебраической точки зрения это означает, что Ахиллес и черепаха находятся в одной точке в один момент времени. Получаем уравнение

10t = 10 + t.

Чтобы решить его, вычитаем t из обеих частей и получаем 9t = 10. Делим обе части на 9 и получаем t = 10 / 9 секунды, то есть ровно тот же ответ, что нам дал анализ. Таким образом, с точки зрения анализа в ситуации с Ахиллесом и черепахой нет никакого парадокса. Если пространство и время непрерывны, все прекрасно работает.


Зенон в цифровом мире

В третьей апории под названием «Стрела» Зенон выступает против альтернативной идеи, что пространство и время дискретны [36], то есть состоят из крохотных неделимых частей вроде пикселей пространства и времени. Суть парадокса в следующем: если пространство и время дискретны, то летящая стрела не может двигаться, поскольку в каждый момент (пиксель времени) она занимает некоторое определенное положение в каком-то определенном месте (конкретном наборе «пикселей» в пространстве). Следовательно, в любой конкретный момент стрела не движется. Она также не перемещается между мгновениями, так как, по предположению, между ними нет времени. Поэтому стрела вообще никогда не движется.

На мой взгляд, это самый тонкий и интересный из парадоксов. Философы все еще продолжают его обсуждать, но мне кажется, что на две трети Зенон прав. В мире, где пространство и время дискретны, стрела в полете вела бы себя именно так, как указывает ученый. Она бы странным образом материализовывалась в одном месте за другим по мере того, как время двигалось бы дискретными шажками. И он прав также в том, что, исходя из наших ощущений, реальный мир не таков, во всяком случае не такой, как мы его обычно воспринимаем.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация