Трудно подобрать более убедительные доказательства важнейшей роли СОД, однако изучение фермента еще раз показало необходимость согласованного действия разных антиоксидантов. СОД не ликвидирует токсичное вещество, а лишь позволяет в какой-то степени отсрочить решение проблемы. Продуктом реакции с участием СОД является пероксид водорода, который тоже опасен. Возникает вопрос, так ли это хорошо, если пероксид водорода накапливается в концентрации в миллиарды раз выше нормы. Известны ситуации, когда избыток СОД может представлять опасность. Например, у людей с синдромом Дауна имеется лишняя копия 21-й хромосомы. Мы не знаем точно, почему наличие дополнительной копии хромосомы приводит к таким серьезным последствиям, но знаем, что на этой хромосоме находится ген СОД, так что люди с синдромом Дауна синтезируют слишком много СОД. Синдром характеризуется окислительным стрессом, приводящим к неврологическим нарушениям. Возможно, люди с синдромом Дауна испытывают окислительный стресс именно по той причине, что у них слишком много этого фермента.
Однако в нормальных физиологических условиях весь образовавшийся пероксид водорода быстро удаляется каталазой, которая превращает его в кислород и воду. В главе 7 мы говорили о том, что существуют и другие ферменты, которые безопасным образом, без выделения кислорода, могут удалить пероксид водорода и органические пероксиды с помощью таких доноров электронов, как глутатион и витамин С. Список ферментов, способных расщеплять пероксиды, постоянно пополняется. Например, в 1988 г. Суе-Гоо Ре и его коллеги из Национального института сердца, легких и крови в США открыли новое семейство антиоксидантных ферментов, которые теперь называют пероксиредоксинами. В активном центре этих ферментов нет иона металла, зато есть два соседних атома серы, которые принимают электроны от маленького серосодержащего белка тиоредоксина. К середине 1990-х гг. похожие пероксиредоксины были выделены из представителей всех доменов жизни, так что и эти ферменты, по-видимому, уже были у LUCA. К настоящему времени известно не менее 200 генов родственных пероксиредоксинов и определена последовательность пяти человеческих генов.
Я упомянул о пероксиредоксинах еще и по той причине, что они позволяют найти ответ на давнишнюю загадку, касающуюся паразитов человека, таких как самый страшный возбудитель малярии Plasmodium falciparum и паразитический червь Fasciola hepatica. Когда эти паразиты попадают в организм человека, они подвергаются атаке кислородными радикалами, высвобождаемыми нейтрофилами и другими иммунными клетками. Эта атака настолько сильна, что может вызвать очень сильную воспалительную реакцию и жар, способные убить не только паразита, но и хозяина. Большинство паразитов защищаются с помощью антиоксидантных ферментов, таких как СОД, но, как ни странно, лишь у немногих есть каталаза для удаления пероксида водорода. В 1980-х гг. это казалось противоречием: действие СОД в отсутствии каталазы должно убивать паразитов, усиливая реакцию иммунной системы. Но этого не происходит. Паразиты одерживают верх. По-видимому, они имеют какой-то другой фермент, расщепляющий пероксид водорода. Поиски этого «недостающего звена» в конечном итоге привели к открытию пероксиредоксинов, которые с тех пор обнаружены у всех паразитов, не имеющих каталазы.
Понимание функции пероксиредоксинов помогает найти новые способы борьбы с паразитарными инфекциями. Например, одна из возможностей заключается в использовании в качестве вакцины фрагментов белков паразитов, которые отличаются от человеческих аналогов, что позволит иммунной системе атаковать один из ключевых бастионов антиоксидантной защиты паразитов.
Если перед клетками стоит задача обезвредить свободные радикалы, пока они не причинили непоправимого вреда, сочетание СОД и какого-либо фермента для удаления пероксида водорода является практически обязательным. Поскольку существует множество ферментов, способных расщеплять пероксид водорода, недостаточность каталазы переносится легче, чем недостаточность СОД. Более того, как мы видели, пероксид водорода опасен только в присутствии железа или меди, которые могут катализировать образование гидроксильных радикалов. В норме эти металлы удерживаются белками — ферритином и церулоплазмином. Микробиолог и эволюционист Томас Билински из Университета Люблина (Польша) считает, что удаление ионов металлов, возможно, является самым лучшим способом предотвращения образования гидроксильных радикалов. Но даже несмотря на все меры предосторожности, некоторое количество гидроксильных радикалов все же образуется. В главе 6 я отмечал, что скорость выведения окисленных фрагментов ДНК с мочой позволяет предположить, что ДНК ежедневно подвергается многочисленным «атакам» свободных радикалов. Даже с учетом экспериментальной ошибки следует признать, что ферментативная защита не является совершенной. Этот вывод подтверждается нашей зависимостью от таких пищевых антиоксидантов, как витамины Е и С. Технически их можно отнести к антиоксидантам, прерывающим цепные реакции, поскольку они гасят свободнорадикальные цепные реакции, уже начатые гидроксильными радикалами. Это третий механизм защиты из нашего списка.
Большинство антиоксидантов, прерывающих цепные реакции, действуют по тому же принципу, что и витамин С, — путем передачи электронов. Многие наиболее известные антиоксиданты, включая каротиноиды, флавоноиды, фенолы и танины, человек получает в составе растительной пищи. Сложно оценить участие каждой группы в поддержании антиоксидантного равновесия в организме, однако именно с этими веществами обычно связывают пользу овощей и фруктов. Но не все антиоксиданты данной группы мы получаем с пищей. Мочевая кислота, билирубин (пигмент желчи и продукт распада гема) и липоевая кислота являются продуктами нашего собственного метаболизма. Это не менее мощные антиоксиданты, чем витамины С и Е. Некоторые состояния, которые мы обычно рассматриваем в качестве патологических, например желтуха новорожденных, могут объясняться физиологической адаптацией. В частности, билирубин, накапливающийся в коже при желтухе, защищает младенца от окислительного стресса. Ребенок выходит из замкнутого и безопасного пространства матки в богатый кислородом внешний мир, но у него еще нет защиты, которую предоставляют пищевые антиоксиданты, поэтому ему нужен билирубин. Уродливый цвет синяка тоже связан с выделением билирубина, защищающего поврежденную ткань от окислительного стресса, поскольку антиоксиданты из крови могут не справиться с этой задачей.
Во многих случаях нам неизвестно точное соотношение вреда и пользы антиоксидантов, прерывающих цепные реакции. Например, мочевая кислота — это мощный антиоксидант, но в высокой концентрации она способствует развитию подагры, поскольку кристаллизуется в суставах. Иногда повышенный уровень мочевой кислоты считают фактором риска сердечно-сосудистых заболеваний, поскольку люди с высоким уровнем этого вещества в крови чаще других страдают от сердечных приступов. Впрочем, такая простая корреляция может оказаться ошибочной. Люди с повышенным риском сердечно-сосудистых заболеваний обычно употребляют меньше пищевых антиоксидантов. Совершенно естественная реакция организма заключается в усилении выработки эндогенных антиоксидантов. Чем сильнее прогрессирует болезнь, тем больше мочевой кислоты нужно для ее преодоления, поэтому и наблюдается связь между тяжестью заболевания и содержанием мочевой кислоты в крови. Конечно, это лишь теоретическое рассуждение, но оно подчеркивает ошибочность линейных ассоциаций. В данном случае попытки снизить уровень мочевой кислоты в плазме без изменения рациона питания могут привести к негативным последствиям. Но если мы изменяем характер питания, мы не сможем прийти ни к какому строгому выводу относительно роли мочевой кислоты. Между количеством антиоксидантов и состоянием здоровья очень мало однозначных зависимостей.