Система клубеньков — пример метаболизма при крайне низком содержании кислорода, но в целом практически то же самое происходит и в клетках человеческого тела. Наша очевидная зависимость от кислорода скрывает от нас тот факт, что клетки внутренних органов совсем не адаптированы к приему кислородных ванн. Развитие многоклеточных организмов, возможно, отчасти было вызвано необходимостью защищаться от кислорода, поскольку внутри организма концентрация кислорода ниже, чем снаружи. Нашу элегантную систему циркуляции крови, которую в первую очередь рассматривают в качестве системы распределения кислорода между индивидуальными клетками, вполне можно воспринимать как средство защиты от кислорода или по крайней мере контроля его содержания.
Давайте остановимся на этом чуть подробнее. Атмосферное давление сухого воздуха на уровне моря составляет около 760 мм рт. ст. Примерно 78% этого давления обеспечивает азот, а 21% — кислород. Таким образом, давление кислорода в атмосфере составляет около 160 мм рт. ст. В легких кислород связывается с гемоглобином, в большом количестве содержащимся в эритроцитах циркулирующей крови. В артериальной крови гемоглобин насыщен кислородом на 95%, и давление кислорода составляет около 100 мм рт. ст. По мере прохождения крови через органы и ткани гемоглобин отдает кислород, так что давление кислорода снижается и на уровне сердца составляет около 85 мм рт. ст., на уровне артериол — 70 мм рт. ст., и в сети капилляров — 50 мм рт. ст. Здесь гемоглобин насыщен кислородом примерно на 60 — 70%. Кислород отделяется от гемоглобина и диффундирует в клетки тканей по градиенту концентрации. Этот градиент постоянно поддерживается за счет выведения кислорода в процессе дыхания. В большинстве клеток давление кислорода составляет 1 — 10 мм рт. ст. Наконец, кислород попадает в митохондрии, где за счет интенсивного дыхания его содержание снижается еще больше. Давление кислорода внутри митохондрий обычно ниже 0,5 мм рт. ст., что эквивалентно 0,3% содержания кислорода в атмосфере, или 0,07% общего атмосферного давления. Таким образом, содержание кислорода в митохондриях почти такое же, как в гипотетических «аноксических» условиях на первозданной Земле. Не является ли это отголоском прошлого?
Можно также сравнить функции гемоглобина и родственных ему белков, включая мышечный белок миоглобин, в клубеньках бобовых растений и в клетках животных. После всего, что вы уже узнали из данной главы, вас не должно удивлять наличие похожего на гемоглобин белка (с очень близкой последовательностью) у археи Halobacterium salinarum, о чем в 2000 г. в журнале Nature сообщил Шаобин Хоу и его коллеги из Университета Гонолулу на Гавайях. Древнейшее происхождение гемоглобина и миоглобина уже никого не удивляет; аналогичные последовательности обнаружены и у бактерий. Но открытие Хоу показывает, что подобные молекулы могли существовать уже у LUCA.
Зачем LUСА или другим одноклеточным организмам нужен гемоглобин — белок, который переносит кислород в крови животных? Взгляните на проблему под другим углом, и все встанет на свои места: гемоглобин следует рассматривать не как переносчик кислорода, а как регулятор уровня кислорода. Именно такую функцию выполняет леггемоглобин в клубеньках бобовых растений — он поддерживает очень низкую внутриклеточную концентрацию кислорода, высвобождая кислород только по требованию. Так же работает миоглобин, ответственный за красный цвет мышц животных. Структура миоглобина похожа на структуру одной субъединицы гемоглобина, а его сродство к кислороду выше, чем сродство гемоглобина. Именно поэтому миоглобин может выводить кислород из кровотока и запасать его в мышцах. В мышцах китов и других глубоководных животных очень много миоглобина, связывающего большой объем кислорода, что позволяет животным часами находиться под водой. Однако уровень свободного кислорода в их мышцах постоянно остается низким.
Такая же система реализуется и в одноклеточных организмах. Их гемоглобиноподобные белки сначала запасают, а потом постепенно высвобождают кислород, поддерживая в клетках его низкую концентрацию, пригодную для дыхания. Именно эту регуляторную функцию подтверждает открытие Хоу и его коллег. Обнаруженная ими в клетках Halobacterium salinanim молекула действует в качестве кислородного датчика, позволяющего клетке определять уровень кислорода и перемещаться в зону его оптимальной концентрации. Некоторые бактерии тоже имеют аналогичные датчики. Общий знаменатель во всех этих механизмах — способность поддерживать внутриклеточную концентрацию кислорода на определенном уровне.
В таком ключе утверждение Кастрезаны и Сарасте о том, что LUCA мог дышать кислородом, приобретает смысл. Клеткам LUСА нужно было совсем немного кислорода, возможно, едва детектируемое количество, но они могли запасать его и использовать при необходимости. Если это так, многие потомки LUСА, по-видимому, потеряли способность применять кислород для производства энергии в связи с адаптацией к жизни в специфических условиях. Другие утратили возможность перерабатывать сульфиты или нитриты. Предки эукариот, очевидно, потеряли гены большинства белков дыхательной цепи, включая ген цитохромоксидазы, но затем получили некоторые из них обратно от пурпурныx бактерий, превратившихся в митохондрии. Изменившиеся до неузнаваемости обломки этих генов, наверное, по-прежнему составляют часть «мусорной» ДНК
[53]. Самое удивительное заключается в том, что LUСА мог использовать кислород для получения энергии уже 4 млрд лет назад. Безусловно, эта клетка умела защищаться от кислорода и, возможно, использовала для этого гемоглобиноподобные белки и антиоксидантные ферменты, такие как СОД. В очередной раз, теперь уже с помощью генетических данных, мы доказали несостоятельность гипотезы о том, что антиоксиданты появились в ответ на увеличение концентрации кислорода в воздухе.
Конечно, это гипотетический сценарий, но он подтверждается интересными и согласованными доказательствами. Вывод о том, что LUСА имел гибкий метаболизм, позволяет разрешить ряд старых парадоксов, в частности эволюцию фотосинтеза, древнейшее происхождение гемоглобина и аэробного дыхания. Если основные тезисы нашего сценария верны, традиционные представления придется пересматривать практически полностью.
Итак, давайте кратко сформулируем базовые положения новой эволюционной схемы. LUСА жил в среде, сформированной под действием космического излучения. Гдe бы жизнь ни появилась изначально, LUCA должен был жить на поверхности океана, хотя бы какое-то время. Поскольку археи произошли от LUСА (а не наоборот), серные термофильные организмы не могли быть самыми первыми формами жизни, как считают некоторые. Напротив, если LUСА обладал гибким метаболизмом, он жил в изменяющемся мире, в том числе на поверхности океана.