На протяжении многих лет эволюцию цитохромоксидазы связывали именно с ее антиоксидантным действием. Фермент изначально возник при повышении содержания кислорода в воздухе в результате фотосинтеза и только потом стал использоваться в качестве дыхательного фермента. Такой сценарий подтверждался наличием второй (несвязанной в эволюционном плане) формы цитохромоксидазы у некоторых протеобактерий, включая Еscherichia coli и Azotоbacter vinelandii. Вторая форма в сто раз менее избирательна по отношению к кислороду (она, в частности, не отличает кислород от таких молекул, как оксид азота NО), но работает намного активнее, очень быстро перерабатывая избыток кислорода. Более того, эта оксидаза включается только тогда, когда бактерия попадает в среду с высоким содержанием кислорода, где действует как пылесос, засасывая кислород и аналогичные молекулы.
Таким образом, активность цитохромоксидаз двух типов зависит от содержания кислорода в среде. Действительно очень похоже, что эти ферменты появились для защиты клеток от кислорода. В таком случае ревизионистская гипотеза Кастрезаны и Сарасте повисает в воздухе. Если у LUCA была цитохромоксидаза, она не могла возникнуть в ответ на повышение концентрации кислорода, которое произошло только через миллиард лет. Так как и зачем появился этот фермент? В главе 7 мы говорили о том, что озера и мелкие моря находились в состоянии окислительного стресса, вызванного ультрафиолетовым излучением, расщеплявшим воду с образованием свободных радикалов кислорода и пероксида водорода. Такие ферменты-антиоксиданты, как супероксиддисмутаза (СОД), найдены у представителей всех трех доменов жизни и, вполне вероятно, могли быть у LUCA. Возможно, цитохромоксидаза тоже возникла как средство защиты от ультрафиолетового излучения, а не в ответ на повышение концентрации кислорода в воздухе?
Точного ответа мы не знаем, но, скорее всего, это не так. Если бы данный фермент возник как антиоксидант для защиты от ультрафиолетового излучения, его функция в дыхательной цепи (накопление энергии от передачи электронов кислороду, а не только поглощение газообразного кислорода) эволюционировала бы позднее независимым путем в различных ветвях бактерий и архей. В таком случае эти группы клеток должны иметь разные механизмы накопления энергии. Однако механизмы чрезвычайно похожи и поэтому унаследованы от общего предка
[52]. Таким образом, если исходно цитохромоксидаза возникла не как антиоксидант, значит, она была нужна для реализации ее теперешнего предназначения — получения энергии от передачи электронов на молекулу кислорода. Вам такой сценарий кажется более правдоподобным? Мы видели, что окислительный стресс без кислорода возможен, но можно ли представить себе кислородное дыхание без кислорода? Все зависит от того, что значит «без кислорода». Понятие «аноксические условия» (отсутствие кислорода) чрезвычайно расплывчатое и для геологов, зоологов и микробиологов имеет разное значение. Геологи называют «аэробной средой» такую среду, в которой содержание кислорода не ниже 18% современного содержания кислорода в атмосфере, а «дизаэробной средой» они называют среду с более низким содержанием кислорода. Среду с содержанием кислорода менее 1% геологи называют «азоической» или «аноксической». Зоологи говорят о «нормоксических» и «гипоксических» условиях: гипоксией называют такое содержание кислорода, при котором нарушается процесс дыхания, обычно это ниже 50% современного содержания кислорода в атмосфере. Микробиологи оперируют другими терминами, в частности, используют такой показатель, как точка Пастера — концентрация кислорода, при которой некоторые микроорганизмы переключаются с аэробного дыхания на брожение (обычно ниже 1% современного содержания кислорода в воздухе). Однако некоторые микробы дышат кислородом даже при его очень низком содержании в воздухе, ниже 0,1% нормального уровня. Такие условия — очевидно аноксические для геологов — вполне могли существовать на древней Земле, особенно в мелких водоемах за счет расщепления воды.
Удивительно, что некоторые современные микроорганизмы способны использовать кислород в еще более низкой концентрации. Например, некоторые виды протеобактерий живут в симбиозе с бобовыми растениями, поселяясь в их клубеньках. В обмен на кров и защиту они снабжают растения нитратами, которые синтезируют из азота воздуха. Активность нитрогеназы, катализирующей эту реакция, ингибируется кислородом даже в очень низкой концентрации. Бобовые растения и азотфиксирующие бактерии устроены таким образом, чтобы поддерживать минимальную концентрацию кислорода в клубеньках. Бактерии окружают себя толстым слоем слизи, препятствующей проникновению кислорода. Если этой защиты недостаточно, они активируют фермент, который быстро захватывает кислород, не производя энергии. Бобовые растения синтезируют родственный гемоглобину кислород-связывающий фермент леггемоглобин, регулирующий концентрацию свободного кислорода. Благодаря этим адаптациям уровень кислорода в клетках бактерий ниже 0,01% атмосферного уровня, так что кислород не мешает действию нитрогеназы.
Удивительно, что при всех этих адаптациях, призванных минимизировать концентрацию кислорода, некоторые азотфиксирующие бактерии, такие как Bradyrhizobium japonicum, являются аэробами. Их форма цитохромоксидазы, известная как FixN, отличается чрезвычайно высоким сродством к кислороду. Этот фермент — дальний родственник митохондриальной цитохромоксидазы; вероятно, обе формы произошли от общего предка. По некоторым данным, FixN функционально связана с леггемоглобином, который высвобождает связанный кислород только при очень низком содержании кислорода в среде. Таким образом, поддержание низкой концентрации кислорода достигается за счет нескольких механизмов, и весь кислород, которому удается прорваться через эту защиту, связывается леггемоглобином. При очень низкой концентрации кислорода (ниже 0,01%) леггемоглобин передает связанный кислород оксидазе FixN, использующей его для получения энергии в форме АТФ. Система в целом очень стабильна и направлена на регуляцию содержания кислорода, а не на его ликвидацию.