Интеграция различных защитных механизмов для борьбы с окислительным стрессом позволяет предположить, что жизнь могла изобрести пути противостояния кислородной интоксикации задолго до появления кислорода в атмосфере — под воздействием ионизирующего излучения. Мы уже пришли к выводу, что увеличение концентрации кислорода в воздухе не было причиной массового исчезновения живых организмов в докембрийском периоде и после него. Поскольку кислород, безусловно, токсичен, жизнь должна была каким-то образом адаптироваться к этой угрозе заранее. Может ли быть, что жизнь сначала адаптировалась к космическому излучению и это cталo основой адаптации к другим источникам oпасности? Если это так, то Фред Хойл и Пол Дейвис были в определенном смысле правы. Жизнь действительно была подвергнута испытанию радиацией, но это произошло не в космосе, а на Земле, и не недавно, а 4 млрд лет назад.
Такой сценарий подтверждается открытиями, сделанными на Марсе с помощью космического аппарата «Викинг» в 1976 г. «Викинг» был оборудован инструментами для проведения трех экспериментов с целью поиска признаков жизни в марсианской почве. Результаты экспериментов не позволили сделать однозначных выводов, и корректность интерпретации обсуждается до сих пор. Однако результаты одного эксперимента, хотя и не давали очевидного ответа, оказались совершенно неожиданными. Эксперимент должен был выявить различия в составе газовой смеси, производимой микробами и химическими процессами. Образцы поверхности Марса инкубировали в сухой, чуть влажной или очень влажной среде, а затем в них анализировали газовую фазу. Предварительно образцы обрабатывали питательным бульоном, состоящим из смеси органических соединений и неорганических солей, которую Гилберт Левайн (один из ученых, стоявших у истоков создания «Викинга» и активный защитник идеи существования марсианской жизни) назвал «куриным бульоном». Эксперимент проходил в два этапа. Сначала с бульона снимали крышку, чтобы выходящие из него пары воды увлажнили почву в емкости с образцом. Затем на почву выливали небольшое количество бульона, чтобы запустить метаболизм любых присутствующих в образце организмов.
К удивлению ученых, удаление крышки сразу приводило к выделению из марсианской почвы большого количества кислорода — в 130 раз больше, чем показывали предварительные расчеты. Ученые решили, что бульон, возможно, стимулировал процесс фотосинтеза, однако те же самые реакции происходили и в темноте, и даже после того, как образцы выдерживали при температуре 145 °С на протяжении 3,5 часа, чтобы убить всех микробов. Но когда после активной фазы выделения кислорода к образцу добавляли свежий бульон, кислород больше не выделялся, что свидетельствовало о завершении процесса. Хотя этот эксперимент напрямую не отрицает наличие в почве живых организмов, его легче объяснить в рамках химии, чем биологии. По-видимому, xимический cocтaв почвы был очень богатым, поскольку выделение газа наблюдалось даже при добавлении простой воды. После некоторых размышлений ученые пришли к выводу, что в образцах почвы содержались супероксиды и пероксиды, образовавшиеся под действием ультрафиолетового излучения на атмосферу или на саму почву. Этот вывод был подтвержден анализом химического состава горных пород.
Что же произошло на Марсе? Можно предположить, что гидроксильные радикалы, пероксид водорода и супероксидные радикалы возникали на протяжении длительного времени в результате расщепления воды в почве или в атмосфере под действием ультрафиолетового излучения. Поскольку воды больше не было, эти активные соединения стали взаимодействовать с железом и другими минеральными веществами в почве, что привело к образованию ржавчины и придало планете характерный красный цвет. На Земле эти соединения, скорее всего, разложились бы, но в сухих и стерильных условиях на Марсе они сохранились. Когда с емкости с бульоном снимали крышку, замершие химические реакции сразу доходили до конца. При распаде неустойчивых оксидов железа «законсервированные» радикалы вступали в реакции, заставляя горные породы выделять воду и кислород. Забавно, но героям из научно-фантастических романов, желающим обезвредить почву и наполнить марсианский воздух кислородом, понадобилось бы лишь немного теплой воды, и Красная планета могла бы стать голубой.
Из всего сказанного следует, что Марс находится в состоянии сильного окислительного стpeсса. Хотя в его неплотной атмосфере содержится лишь 0,15% кислорода, развитие любых гипотетических форм марсианской жизни ограничено токсичностью различных форм кислорода, образовавшихся под воздействием космического излучения. И если это так, на Земле 4 млрд лет назад имела место точно такая же ситуация. Земля расположена ближе к Солнцу и подвержена более интенсивному воздейcтвию излучения. Пока не было кислорода, отсутствовал и озоновый слой, и жесткие ультрафиолетовые лучи проникали до самой поверхности Земли. Но традиционная точка зрения о том, что континенты и мелкие моря были простерилизованы космическими лучами, больше не выдерживает критики. Hовые факты доказывают, что устойчивость к кислороду и излучению появилась у самых первых земных организмов. Значение этого факта для эволюции и для нашей с вами жизни чрезвычайно велико, о чем мы и поговорим в последующих главах.
Глава седьмая. Зеленая планета. Излучение и эволюция фотосинтеза
В романе «Автостопом по галактике» Земля упоминается как весьма незначительная сине-зеленая планета, вращающаяся вокруг небольшой желтой звезды где-то на неизученных окраинах западного спирального рукава Галактики. Высмеивая наше антропоцентрическое восприятие Вселенной, Дуглас Адамс оставляет Земле право гордиться одним-единственным достижением — фотосинтезом. Синий — цвет воды, сырьевого материала для фотосинтеза. Зеленый — цвет хлорофилла, удивительного вещества, превращающего энергию света в химическую энергию растительных клеток. И наше маленькое желтое Солнце обеспечивает Землю (возможно, за исключением Англии) всей необходимой энергией. Скальпель Адамса точен: именно фотосинтез сформировал наш мир. Без фотосинтеза не было бы не только травы и деревьев: в воздухе отсутствовал бы кислород, а без кислорода нет наземных животных, полового размножения, разума и сознания и никаких прогулок по галактике.
Мир в такой степени зависит от зеленой машины фотосинтеза, что за деревьями можно не разглядеть леса — не увидеть самого главного. В процессе фотосинтеза солнечный свет используется для расщепления воды, что, как мы видели, совсем не просто и не безопасно: то же самое происходит и под действием излучения. Хлорофилл придает солнечному свету разрушительную мощь рентгеновских лучей. Побочным продуктом этой реакции является токсичный газ кислород. Почему нужно расщеплять прочную молекулу воды с выделением ядовитого продукта, если можно расщепить что-нибудь более податливое, такое как сероводород или растворенные соли железа, и получить гораздо менее опасные продукты?
Один вариант ответа находится быстро. Расщепление воды при фотосинтезе дает живым организмам гораздо больше возможностей, чем гидротермальная активность — основной источник сероводорода и солей железа. В современных условиях объем всех органических соединений углерода, производимых в гидротермальных источниках, составляет около 200 млн тонн в год, тогда как объем углерода, превращаемого растениями, водорослями и цианобактериями в сахарá в процессе фотосинтеза, оценивается в миллион миллионов тонн в год — в 5000 раз больше. Хотя в отдаленном прошлом вулканическая активность на нашей планете, безусловно, была выше, изобретение оксигенного фотосинтеза увеличило объем производства органической материи на два или три порядка. После изобретения оксигенного фотосинтеза бессмысленно было оглядываться назад. Но это понятно только теперь. Описанный Дарвином естественный отбор — движущая сила эволюции — не обладает предсказательной силой. Невозможно представить себе даже самую выгодную «конечную» адаптацию, путь к которой не проходит через последовательные этапы, и каждый из них дает организму определенное преимущество. В случае оксигенного фотосинтеза на промежуточных этапах должны были сформироваться мощные молекулярные механизмы расщепления воды под действием солнечного света. Если биологическая система позволяет расщепить воду, значит, она может расщепить все что угодно. Такое мощное оружие нужно хранить под замком, иначе оно уничтожит все другие внутриклеточные молекулы. И если первый механизм расщепления воды не был соответствующим образом отделен от других структур клетки, что вполне логично для первой стадии совершенно нового процесса, трудно представить себе, какие преимущества он мог обеспечивать. А кислород? До того как клетки научились выполнять оксигенный фотосинтез, они должны были уметь защищаться от токсичного побочного продукта этого процесса, иначе они бы погибли, как современные анаэробы в присутствии кислорода. Но как они могли адаптироваться к кислороду, если его еще никто не производил? Возникает мысль о «кислородном холокосте», однако мы уже поняли, что эта гипотеза не подтверждается никакими геологическими данными.