Уотсон в основном работал с полосками бумаги, что позволяло контролировать условия эксперимента и сравнивать подобное с подобным. Он увлажнял бумагу до определенной степени, а затем поджигал. Он провел сотни таких экспериментов при разной степени влажности и содержании кислорода и построил графики вероятности возгорания под действием электрического разряда, скорости распространения огня и объема воды, необходимого для тушения пожара. Его результаты подтверждали наше интуитивное представление о том, что высокое содержание кислорода в воздухе усиливает горение и нивелирует влияние влажности.
В его результатах нет никакой ошибки. Но дело в том (и сам Уотсон это признает), что ответил он не на те вопросы. Бумага — плохая модель биосферы, как знает каждый, кто разжигал огонь с помощью газеты. Как мы уже отмечали в главе 4, при изготовлении бумаги из целлюлозной пульпы удаляют бóльшую часть лигнина, что значительно повышает горючесть материала. Лигнин же почти не горит — он медленно тлеет. Деревья с высоким содержанием лигнина в коре сравнительно устойчивы к действию огня. Кроме того, бумага не удерживает воду за счет осмоса, как это делают живые клетки. Поэтому содержание влаги в тонких растительных тканях, таких как листья, значительно выше, чем в бумаге такой же толщины. Уотсон определял воспламеняемость бумаги вплоть до влажности 80% насыщения, тогда как некоторые листья способны удерживать такое количество воды, которое эквивалентно 300% насыщения. При высоком риске возгорания растения часто содержат огнеупорные вещества, такие как кремний. Например, в некоторых видах соломы удивительно много кремния, что мешает сжигать сельскохозяйственные отходы. Домохозяйки прекрасно это знают: во время Второй мировой войны на оконные шторы часто наносили силикатную краску, поскольку она замедляла распространение пожара при бомбардировках.
Из всего сказанного следует неожиданный вывод: мы не знаем, в какой степени атмосферный кислород влияет на скорость распространения огня в реальных экосистемах. Я понимаю, что смесь старых консервных банок с влажной органикой взрывается при высоком содержании кислорода, как в современной атмосфере, но на основании опубликованных данных нельзя понять, действительно ли пожары могли быть неразрешимой проблемой в гипотетической атмосфере каменноугольного периода. Учитывая катастрофические последствия современных лесных пожаров, трудно предположить, что высокое содержание кислорода в прошлом не угрожало всей растительности планеты, но следует учитывать два других фактора. Во-первых, источником большинства современных пожаров является человеческая деятельность — случайная или преднамеренная. Пожаров было бы намного меньше, если бы они возникали только в результате вспышки молнии. Если в прошлом угроза пожара была выше, этот дополнительный риск уравновешивался значительно меньшим числом источников огня, и пожаров, скорее всего, было не больше, чем теперь. Во-вторых, растения обладают удивительной способностью адаптироваться к регулярным опустошительным пожарам.
Наши знания об адаптации современных растений к огню позволяют заняться поиском аналогичных адаптаций в ископаемых образцах каменноугольного и раннего пермского периода. Этому вопросу был посвящен замечательный обзор, опубликованный в 1989 г. Дженнифер Робинсон, тогда работавшей в Университете Пенсильвании. Она утверждала, что высокое содержание кислорода в атмосфере во время каменноугольного периода могло привести к адаптации к огню, что должно было отразиться в палеонтологических образцах. Если же таких следов не найдено, это может опровергать предположение о повышении концентрации кислорода. Далее Робинсон утверждала, что, хотя адаптация растений к огню не доказывает высокого содержания кислорода в воздухе, более веским аргументом было бы наличие адаптаций даже у болотных растений каменноугольного периода. Это действительно любопытно. Большинство современных болотных растений не должны адаптироваться к огню, поскольку вероятность возникновения пожаров в заболоченной местности при современном уровне кислорода в атмосфере практически равна нулю.
Робинсон пришла к предварительному заключению, что болотные растения каменноугольного периода действительно адаптировались к огню. Я говорю «предварительному», поскольку интерпретировать результаты достаточно сложно. Например, листья суккулентов замедляют распространение огня, но могут быть адаптацией к уровню влажности или просто отражением биоразнообразия. Глубокие клубни (как у картофеля) способны запасать достаточно энергии для регенерации растения после пожара, но также могут быть результатом глубокого залегания почвы. Еще сложнее интерпретировать морфологические адаптации исчезнувших растений. Но, несмотря на все эти сложности, палеонтологические доказательства подтверждают идею адаптации к огню. Большинство крупных растений того времени имели глубоко расположенные клубни, толстую кору с высоким содержанием лигнина, листья суккулентного типа и ветви, расположенные высоко над землей — вне досягаемости для огня, распространяющегося по подлеску. Кроме того, существовало мало вьющихся растений, которые могли бы способствовать распространению огня на кроны деревьев.
Гигантские плауны — доминирующий вид деревьев в болотах каменноугольного периода — по виду напоминают пальмы, хотя они не родственники. Их толстая кора с чудесным геометрическим рисунком и высоким содержанием лигнина очень хорошо сохранилась (из этой коры изготовлено нескольких декоративных колонн в Музее естественной истории в Лондоне). Мы не знаем, адаптировались ли гигантские плауны к пожарам, но сжечь их действительно было непросто. Дошедшие до нас более мелкие представители той эпохи, такие как папоротники и хвощи, не выглядят защищенными от огня, но они очень плохо горят из-за высокого содержания огнеупорных веществ. Как пишет Робинсон, «современный хвощ практически не горит (личное наблюдение), возможно, из-за высокого содержания двуокиси кремния». Я представляю себе Робинсон — неудовлетворенного пиромана, топающего ногой от разочарования: хвощ не горит! Из страстей такого рода и возникает истинная наука.
Другие данные, в частности обилие и свойства ископаемого древесного угля, тоже указывают на периодические нашествия огня. Некоторые виды угля содержат более 15% по объему ископаемого древесного угля, что невероятно много, если учесть, что эти пласты формировались в болотах, которые в современных условиях практически никогда не горят. Ближайший современный аналог болот каменноугольного периода — болота Индонезии и Малайзии, но там древесный столь почти не встречается. Это несоответствие заставляло многих ученых задуматься об ином происхождении ископаемого древесного угля: может быть, это другой тип угля, который образовался не в результате обжига? Однако в конце концов в 1966 г. Гивен, Биндер и Хилл показали, что древесный уголь сформировался при температуре порядка нескольких сотен градусов. Это действительно древесный столь, а не какой-то другой, образовавшийся под высоким давлением. Сегодня почти все геологи сходятся во мнении, что раньше в болотистой местности частенько бушевали пожары, однако продолжают спорить по поводу их причин. Пожары могли быть связаны с высоким содержанием кислорода в воздухе, но также могли отражать локальные изменения климата и частоту высыхания болот.
Пересмотр имеющихся палеонтологических доказательств в свете новых данных об изменении содержания кислорода в атмосфере позволяет расставить акценты по-другому. Уголь, образовавшийся в условиях предполагаемого высокого содержания кислорода, как в каменноугольном и меловом периодах, содержит вдвое больше древесного угля, чем уголь, сформировавшийся в периоды с низким содержанием кислорода, такие как эоцен (от 54 до 38 млн лет назад). А значит, при высоком содержании кислорода в воздухе пожары бушевали чаще, и связано это не только с климатом. Такой вывод напрашивается в результате анализа некоторых свойств древесного угля. Блеск древесного угля зависит от температуры обжига древесины. Уголь, произведенный при температуре выше 400 °С, блестит сильнее, чем тот, что получен при более низкой температуре. Интенсивность блеска можно очень точно определить методом отражательной спектроскопии. Анализ ископаемого древесного угля каменноугольного и мелового периодов показывает, что оба типа угля образовались при очень высокой температуре — практически наверняка выше 400 °С, возможно, даже при 600 °С, то есть при очень сильном пожаре. Температура огня при пожаре, конечно же, зависит от множества факторов, включая тип растительности (современные хвойные растения горят при гораздо более высокой температуре, чем лиственные), теплопроводность древесины и уровень грунтовых вод. Но одним из важнейших факторов все же является содержание кислорода в воздухе. Поэтому простейшим объяснением сильного блеска древесного угля каменноугольного и мелового периодов является высокая концентрация кислорода.