Итак, мы вполне обоснованно можем заключить, что кислород был важнейшей движущей силой эволюции в докембрийском периоде. Я не говорю, что кислород напрямую стимулировал эволюцию, однако увеличение его содержания в атмосфере открыло новые горизонты для развития жизни. Ни один важный эволюционный шаг не мог быть совершен без участия кислорода, а при низком содержании кислорода не приходилось ждать быстрого расширения биоразнообразия и появления сложных форм жизни. Любопытно, однако, что основные вливания кислорода в атмосферу произошли не за счет биологических инноваций (за исключением изобретения пищеварительного тракта), как считалось на протяжении многих лет, а за счет небиологических факторов, таких как оледенение и тектоническая активность.
Жизнь на Земле протекала без заметных изменений на протяжении миллиардов лет. Если бы стимулами изменений и эволюции были лишь оледенения и тектонические сдвиги, в спокойном и не встревоженном геологическими переменами мире вряд ли мог накопиться свободный кислород. Земля находилась в покое на протяжении двух долгих периодов, в сумме составляющих половину ее истории. В период от 3,5 до 2,3 млрд лет назад на Земле преобладали бактерии. Затем, после серьезных климатических изменений, произошедших 2,3 — 2 млрд лет назад, установилось новое равновесие, на протяжении которого уровень кислорода в атмосфере составлял от 5 до 18% по отношению к современному. Это новое равновесие стимулировало развитие генетического разнообразия первых эукариот, но не могло обеспечить необходимую энергию для эволюции крупных животных. Такой концентрации кислорода недостаточно для развития крупных и сложных организмов, обладающих мозгом.
Замкнутый круг был разорван второй чередой оледенений, начавшейся 750 млн лет назад и поднявшей содержание кислорода в атмосфере до современного уровня. Теперь эволюция крупных организмов стала лишь вопросом времени, и процесс этот произошел быстро. Вендобионты, кембрийские животные и современные формы жизни возникли за более короткий отрезок времени, чем период оледенений. Эта связь между жизнью и условиями окружающей среды должна насторожить тех, кто пытается отыскать разумную жизнь в других уголках Вселенной. Для возникновения жизни нужна не только вода, но и вулканы, тектоническая активность и кислород. Если на Марсе когда-то и существовала жизнь, она должна была погибнуть вместе с угасанием вулканической активности.
В следующей главе мы поговорим о том, как связан кислород с развитием или гибелью растений и животных в период фанерозоя. Я не нахожу доказательств «кислородного холокоста» в докембрийском периоде, однако существует заметная разница между современным уровнем кислорода в атмосфере (около 21%) и его гораздо более высоким уровнем (35%) в каменноугольном периоде около 300 млн лет назад. Влияние состава газовых смесей для подводного плавания на состояние здоровья человека показывает, что длительное воздействие кислорода в высокой концентрации может приводить к нарушению функции легких, конвульсиям и внезапной смерти, не говоря уже об опасности пожаров и остановке роста растений, что предсказали многие биологи. Действительно ли содержание кислорода в древности достигало опасной отметки? Если да, как же сохранилась жизнь? А если жизнь процветала в богатой кислородом среде, какой вывод следует сделать нам, употребляющим добавки антиоксидантов для замедления старения?
Глава пятая. Стрекоза из Болсоувера. Кислород и появление гигантов
Небольшой шахтерский городок Болсоувер в Дербишире (Англия) неожиданно прославился в 1979 г., когда в угольном пласте на глубине около 500 м шахтеры обнаружили гигантскую окаменелую стрекозу с размахом крыльев около полуметра — примерно как у чайки. Эксперты из Национального музея истории в Лондоне подтвердили, что окаменелость относится к каменноугольному периоду (около 300 млн лет назад). Находку назвали Болсоуверской стрекозой. Это прекрасно сохранившийся и очень старый образец, но он далеко не единственный. Французский палеонтолог Шарль Броньяр еще в 1885 г. описал похожие окаменелости из угольных шахт в центре Франции, а позднее гигантских ископаемых стрекоз находили в Северной Америке, в России и в Австралии. Удивительно, но гигантизм был весьма распространенным явлением каменноугольного периода.
Болсоуверская стрекоза принадлежит к вымершей группе гигантских хищных насекомых (Protodonata), возможно, произошедших от того же предка, что и современные стрекозы (Odonata). Как и их современные родственники, Protodonata имели длинное узкое тело, огромные глаза, мощные челюсти и цепкие лапы, которыми хватали добычу. Почетное место среди когда-либо живших насекомых занимает колоссальная стрекоза Meganeura с размахом крыльев до 75 см и диаметром грудного сегмента тела около 3 см. Для сравнения, самая крупная современная стрекоза имеет размах крыльев 10 см и диаметр грудного сегмента 1 см. Главное отличие гигантских стрекоз от их современных родственников заключается в структуре крыльев, а именно в числе и расположении жилок. В 1911 г. французские палеонтологи Арле предположили, что из-за гигантского размера и примитивных крыльев Meganeura не могла бы летать в современной атмосфере. Они считали, что такой гигант мог подняться в воздух только в очень плотной атмосфере с содержанием кислорода выше 21% (если к имеющемуся количеству азота добавить больше кислорода, общая плотность воздуха увеличится). Это поразительное заявление отзывалось эхом на протяжении всего ХХ в. и многократно и яростно опровергалось сообществом палеонтологов. В 1966 г. датский геолог М. Г. Руттен, используя несколько старомодный стиль, который теперь навсегда исчез из научных журналов, писал следующее:
«В верхнем каменноугольном периоде насекомые достигали метрового размера. Учитывая их примитивный способ дыхания посредством трахеи через внешний скелет, пожалуй, они могли бы существовать только в атмосфере с высоким уровнем О2. Будучи геологом, автор весьма удовлетворен этой линией доказательств, чего нельзя сказать о других геологах. И у нас нет способов, чтобы убедить оппонентов».
Механизм полета насекомых чрезвычайно сложен. Знаменитая, но выдуманная история 1930-х гг. рассказывает об одном швейцарском ученом, специалисте в области аэродинамики, который на основании расчетов доказал, что шмели не могут летать (на самом деле он доказал, что шмели не могут планировать, что правда). Однако не будем презрительно посмеиваться — с тех пор наши знания расширились весьма незначительно. В подробном обзоре о полете стрекоз, опубликованном в 1998 г., Дж. М. Уэйклинг и К. П. Эллингтон заключили, что наше представление об аэродинамике полета стрекозы ограничено недостаточным пониманием взаимодействия между двумя парами крыльев, и признали, что мы не можем создать достоверную модель ее полета. Ввиду такого значительного недостатка информации вряд ли можно прийти к надежным выводам относительно состава древней атмосферы только на основании теоретических расчетов механики полета.
Однако идея о том, что гигантским насекомым для полета требовалась более плотная, насыщенная кислородом атмосфера, так никогда и не была опровергнута. Мы увидим, что там, где не сработала теория, может сработать эмпирический подход. Есть и другие признаки колебаний уровня кислорода в современную эпоху (см. рис. 1). Геологические данные недвусмысленным образом указывают на то, что в океанах на больших глубинах содержалось мало растворенного кислорода, по крайней мере какой-то недолгий отрезок времени, соответствующий массовому вымиранию животных в конце пермского периода 250 млн лет назад. Причиной этого, скорее всего, стало падение уровня кислорода в атмосфере. Напротив, если принять во внимание закон сохранения массы (см. глава 3), приходится заключить, что гигантские залежи угля (представляющие собой главным образом органическое вещество, захороненное на протяжении каменноугольного и начала пермского периода) практически наверняка указывают на рост концентрации кислорода. Вопрос заключается в величине этого эффекта
[24].