Книга Хулиномика 4.0: хулиганская экономика. Ещё толще. Ещё длиннее, страница 36. Автор книги Алексей Марков

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Хулиномика 4.0: хулиганская экономика. Ещё толще. Ещё длиннее»

Cтраница 36

Кардано провёл уже безошибочный анализ для значений суммы очков трёх костей и указал для разных событий ожидаемое значение доли «благоприятных» событий: например, при бросании трех кубиков доля случаев, когда значения всех трёх совпадают, равна 6/216 или 1/36. Вроде бы и очевидно, что их всего шесть – три единицы, три двойки, ну и так далее, всего шесть граней, но до этого (да и после) какие-то были проблемы у людей с этой концепцией.

Именно Джероламо Кардано предложил формулировку вероятности – что это число благоприятных исходов, делённое на число всех возможных исходов. Кардано сделал ещё одно весьма проницательное замечание: при небольшом числе игр реальное количество исследуемых событий может сильно отличаться от теоретического, но чем больше игр в серии, тем это различие меньше. По существу, Кардано вплотную подошёл к понятию вероятности и заявил о законе больших чисел.

Голландец Кристиан Гюйгенс [30] был довольно продвинутый чел: в XVII веке знал пять языков, играл на скрипке, лютне и клавесине, в 13 лет построил себе токарный станок. В 13 лет! У нас дети вон ходят на коньки или в бассейн, в лучшем случае – на изо, а Гюйгенс, он вот ходил в станкостроительный кружок.

Он ещё наловчился вырезывать из стекла линзы и их тряпочкой шлифовать, после чего собрал окуляр для телескопа и обнаружил кольца Сатурна [31], изобрёл маятниковые часы и – внимание – диапроектор, чтобы дичайше смотреть «Ну, погоди!» на слайдах. Часы его конструкции были точны, недороги и быстро распространились по всему миру. Гюйгенс же и написал первую книгу о вероятности. Такой был замечательный голландец, ну вы понимаете, что ему там послужило вдохновением.

А дальше вот что происходит: развивается геодезия, астрономия и стрельба, например. И теория вероятностей начинает применяться в теории ошибок наблюдений, как ложатся пули вокруг мишени. И тут надо сказать про Лапласа, Пьера-Симона. Он опубликовал два закона распределения частотности ошибок, и второй из них называют гауссовым распределением. Дело в том, что большинство случайных величин из реальной жизни, таких, например, как ошибки измерений, стрельбы и прочего, могут быть представлены как анализ большого числа сравнительно малых ошибок, каждая из которых вызвана действием отдельной причины, не зависящей от остальных. Например, дрожанием руки – рука же каждый раз по-разному дёргается.

А второй закон Лапласа гласит, что частота ошибок – степенная функция от квадрата ошибки, что сейчас называется нормальным распределением, а кривая – гауссианой. Гаусс (кстати, Карл), конечно, тоже был очень развитым ребёнком, но в то время ему было два года от роду, и он пока плоховато ещё законы формулировал. Но он подрос и авторитетом задавил бедного Лапласа.

9.4. Независимость

Сейчас я хочу пробежаться по некоторым терминам – для кого-то это будет повторением, но всё равно не повредит. Вероятность чаще всего обозначается латинской буквой p (от слова probability). Это всегда число, которое лежит между нулём и единицей, ну или от нуля и до 100 %. «Про цент» – это по-латински «поделить на сто», поэтому 100 % и есть единица. Если вероятность события – ноль, это значит, что оно не может произойти. Если вероятность равна единице, то оно обязательно произойдёт. В этом основная идея.

Один из базовых принципов – это идея независимости. Вероятность обозначает шансы наступления какого-либо события. Например, результата какого-либо эксперимента вроде броска монеты. Вероятность того, что если вы подбросите монету и она упадёт орлом, равна одной второй, потому что у неё одинаковые шансы упасть орлом или решкой. Независимые эксперименты – это такие эксперименты, которые происходят – сюрприз! – вне зависимости друг от друга.

Если вы бросаете монету два раза, результат первого броска никак не влияет на результат второго, и тогда мы говорим, что это независимые величины. Между ними нет никакой связи.

Один из первых принципов даёт нам правило умножения: если у вас вероятности независимые, то вероятность сразу двух этих событий будет равна произведению их вероятностей. Это не сработает, если события как-то связаны. Страховка построена на том, что в идеале страховая компания продаёт полисы на независимые события (или страхует жизни независимых друг от друга людей). Поэтому лондонский пожар – плохой пример страхового случая. Если кто-то в квартире оступился, у него лампа упала на ковёр и подожгла шторы, а потом загорелась вся квартира, другие дома от этого не сгорят, они от этого неприятного происшествия никак не зависят.

В этом случае вероятность того, что сгорит весь город, страшно мала. Ведь вероятность того, что сгорят дом А, дом B и дом С, равна произведению вероятностей пожара в них. Если она равна одной тысячной, а в городе 1000 домов, то вероятность того, что все они сгорят, равна 1/1000 в тысячной степени, это хотя и не ноль, но можно считать, что ноль. Поэтому если выписать очень-очень много независимых полисов, то риска разориться у страховой компании практически нет. Это фундаментальная идея, которая кажется простой и очевидной, но она совершенно точно не была такой, когда появилась.

9.5. Ожидание мата

Ещё одна важная концепция, которую мы будем использовать, – это матожидание. Кто-то может называть его средним или наиболее ожидаемым результатом – это примерно взаимозаменяемые термины. Можно их немного по-разному объяснять в зависимости от того, говорим ли мы о среднем из известной нам выборки или из всей совокупности событий.

Но сначала надо-таки понять, что такое случайная величина. Если мы проводим эксперимент и результат эксперимента – какое-то непредсказуемое число, то наш эксперимент выдаёт случайную величину. Ну, к примеру, если мы бросаем монету и присвоим решке 0, а орлу – 1, тогда вот мы и определили случайную величину, она принимает значение 0 или 1 совершенно случайно.

Существуют дискретные (то есть прерывистые) случайные переменные, типа той, что я только что привёл в пример, – у неё могут быть только конкретные значения. Когда мы имеем дело со случайными, но вполне определёнными событиями в идеальных условиях (как, например, подбрасывание абсолютно честной монеты), вероятность происшествия – это число нужных нам исходов, делённое на число всех возможных исходов. Так, два раза бросив монету, мы получим вероятность выпадения нужных нам двух решек в виде ¼, потому что исхода у нас четыре (решка-решка, решка-орел, орёл-решка и два орла) – и все они имеют одинаковые шансы.

Есть ещё непрерывные случайные величины, которые на некотором отрезке могут принимать любое значение. Ну вот возьмём мы, смешаем зачем-то горячий чай и холодную водку и опустим туда термометр. Кстати, его тоже изобрели в XVII веке, и тогда концепцию температуры – для нас привычную и понятную – только-только начали применять. Вы уже догадались, что в нашем стакане с волшебным чаем температура – величина непрерывная, у неё неограниченное количество возможных значений, хотя минимальное и максимальное мы представляем неплохо.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация