Действительно, при распространении новости о микрофинансировании важно было не только количество друзей, до которых первоначальные источники могли донести ее непосредственно, но и количество друзей их друзей (то есть друзей второй степени) и друзей третьей (и так далее) степени, до которых информация могла дойти от первоначальных источников
{38}. Как правило, количество непосредственных друзей этих самых источников составляло лишь малую долю от общей численности населения. Несмотря на то что их степень, похоже, не играла вовсе никакой роли, заметно большее число людей присоединялось к банковской программе в тех деревнях, где у первоначальных источников BSS имелась более высокая центральность по собственному вектору, чем в тех деревнях, где центральность по собственному вектору у них была ниже. Если сравнить деревню, в которой центральность по собственному вектору первоначальных источников самая низкая, с той деревней, где она, напротив, наиболее высокая, то мы увидим в среднем утроение количества заемщиков. Для того чтобы информация распространилась по деревням как можно шире, нужно было, чтобы она вышла за пределы круга непосредственных друзей источников — к их друзьям и дальше…
Диффузионная центральность
Но на этом наша история с микрофинансированием еще не заканчивается.
Со временем интерес к любой теме неизбежно угасает. Внимание к большинству новостей достигает пика и держится на этом уровне в течение нескольких часов или дней, а затем их довольно быстро вытесняют более свежие новости. Это относится не только к СМИ, но и к разговорам людей и к их готовности распространять информацию. С одной стороны, если смотреть только на центральность по степени, мы не учитываем, что новости передаются не на один шаг вперед, а дальше. С другой стороны, вычисление собственного вектора предполагает некий бесконечный процесс, охватывающий всю сеть и не затихающий никогда. В действительности же происходит нечто среднее между двумя этими крайностями.
Помня об этом, в своем анализе микрофинансирования мы вывели новый критерий центральности, который позволяет установить, чтó же на самом деле происходит в реальных диффузионных процессах. Люди распространяют новости, но после ряда итераций прекращают говорить на какую-то конкретную тему. Например, какую-то тему обсуждают в течение двух-трех дней, а потом теряют к ней интерес. По нашим оценкам, новость о доступности микрокредитов обычно проходила приблизительно три итерации — то есть редко выходила за пределы круга друзей третьей степени.
Кроме того, на одни темы люди готовы говорить со всеми, кого знают, а другие темы вдохновляют их меньше. По нашим оценкам, люди из одного домохозяйства в каждой итерации рассказывали о микрофинансировании своим друзьям с частотой приблизительно 1/5. Это похоже на наши подсчеты очков для Нэнси и Уоррена, только с 1/5 вместо 1/2 балла, и в данном случае процесс остановился на друзьях третьей степени — вместо того чтобы повторяться до бесконечности
{39}. Нэнси по-прежнему опережает Уоррена, но уже с меньшим отрывом.
Диффузионная центральность служит как бы мостиком между двумя крайностями — центральностью по степени и центральностью по собственному вектору. Если увеличить количество итераций и повысить вероятность передачи информации от одного узла к другому, тогда диффузионная центральность будет копировать центральность по собственному вектору, а если допустить всего одну итерацию или совсем ничтожную вероятность передачи, тогда этот критерий будет пропорционален центральности по степени. Если же выбрать середину, то он будет отражать ограниченные способности человека контактировать с другими участниками своей сети, сообщая нам о том, насколько актуальной и долговечной является распространяемая информация.
Диффузионная центральность оказалась критерием, позволяющим намного точнее, чем даже центральность по собственному вектору, предсказать характер распространения новостей о микрокредитах. Диффузионные центральности первоначальных источников дали в несколько раз лучшие результаты, по сравнению с их же центральностями по собственному вектору, чем и объяснялись различия в распространении известий о микрокредитах в разных деревнях
{40}.
В чем здесь главная мораль? Существуют разные способы измерять центральность, и одни способы лучше других позволяют предсказывать, что произойдет дальше, — в зависимости от контекста.
Пока мы видели три теоретических подхода к измерению положения человека в сети: центральность по степени позволяет выяснить его прямое влияние, центральность по собственному вектору — оценить возможности друзей, а диффузионная центральность — определить способности человека распространять (или получать) информацию с учетом ограничений во времени и интересах. Если вспомнить нашу баскетбольную аналогию, то можно сказать, что это всего лишь некоторые из множества способов оценить значимость положения в сети. Хотя нам и нет нужды перечислять их все, есть, однако, еще одна мера центральности, которая принципиально отличается от уже рассмотренных нами. И один увлекательный исторический эпизод — возвышение династии Медичи — поможет нам проиллюстрировать один из самых интересных критериев центральности с точки зрения власти.