Книга Загадки космоса. Планеты и экзопланеты, страница 9. Автор книги Андрей Мурачёв

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Загадки космоса. Планеты и экзопланеты»

Cтраница 9

Загадки космоса. Планеты и экзопланеты

Считается, что наше Солнце родилось около 4,6 миллиарда лет назад12 в результате взрыва сверхновой в окрестностях одного из таких молекулярных облаков. Волны сжатия, распространяющиеся по межзвездному газу, приводят к значительному повышению концентрации вещества, и равновесие в некоторых частях облака нарушается. То место, где это происходит, становится центром притяжения, и к нему стекается газ из соседних областей – происходит коллапс участка облака. Размер этого участка газопылевого облака, газ из которого формирует звезду, составляет тысячи астрономических единиц. Коллапс облака напоминает процесс формирования снежного кома, несущегося с горы: газ поступает в центр коллапса все быстрее, его становится все больше. Когда масса газа достигает около 7–8 % от массы Солнца, примерно через десять тысяч лет, начинаются термоядерные реакции и зажигается новая звезда. Но это не единственный возможный путь образования звезд. Исследования некоторых ученых показывают, что инициировать звездообразование могут также столкновения филаментов внутри газопылевого облака13.

Коллапсирующее облако формирует тонкий диск, окружающий центр коллапса – будущую звезду. Образовавшиеся диски называют протопланетными, потому что в них в скором времени начнется «стройка» планет. Почему вещество оседает на диск, а не равномерно окружает протозвезду? Причины тут две. Первая состоит в том, что коллапс облака из-за неравномерности распределения газа происходит в каком-то одном из трех измерений, причем этот коллапс, опять же из-за неравномерности распределения, придает материи коллапсирующего облака начальное вращение. Вторая причина более фундаментальна: уменьшение радиуса коллапсирующего облака приводит к тому, что скорость его вращения увеличивается [16], и тут на авансцену выходят центробежные силы. Они препятствуют аккреции (падению) [17] вещества на протозвезду в плоскости вращения и не мешают его падению во всех остальных направлениях. С течением времени масса звезды увеличивается, а в экваториальной плоскости вращения формируется тонкий диск.

Так как протопланетные диски нагреваются излучением звезды, их структуру и свойства лучше изучать в инфракрасном диапазоне – современные телескопы позволяют проводить такие наблюдения. Но современные телескопы позволяют изучать небо в различных диапазонах электромагнитного излучения. На фотографиях, полученных с помощью инфракрасных и субмиллиметровых космических и наземных телескопов, межзвездные облака и протопланетные диски предстают перед наблюдателем во всей красе. Такие телескопы, как уже упоминавшаяся космическая обсерватория «Гершель», спутник IRAS, космический телескоп «Спитцер», система телескопов ALMA, расположенная в высокогорной пустыне в Чили, телескоп Джеймса Клерка Максвелла и некоторые другие, позволили в прямом смысле заглянуть внутрь протопланетных дисков, увидеть их структуру.

Межзвездные облака, в которых идет процесс интенсивного звездообразования, часто поэтически называют «звездные колыбели». Ближайшее к нам место, где прямо сейчас рождаются звезды, – туманность Тельца – располагается на расстоянии 140 св. лет от наc; интенсивное звездообразование также идет в туманности Ориона и многих других. Как правило, звезды в газовых облаках рождаются группами: чтобы это представить, вообразите себе пчелиный рой, застывший в воздухе, замените каждую пчелу на звезду и поместите этот «рой» в огромное газовое облако.

В молекулярных облаках астрономы находят только очень молодые звезды и почти не находят те, что старше 10 миллионов лет. Это происходит потому, что после рождения «рой» звезд выталкивается приливными силами из своей «колыбели» и начинает самостоятельное движение по галактике, а связанный с ним газ быстро рассеивается. На своем пути звезды, выброшенные из звездных колыбелей, взаимодействуют с десятками других звезд, которые, в свою очередь, тоже находятся в движении. Эти взаимодействия приводят к тому, что постепенно «рой» распадается. Сегодня, когда астрономы наблюдают звезды, они редко могут определить место рождения звезды. Скорее всего, мы никогда не узнаем, где родилось наше Солнце.

Вернемся к новорожденной звезде. Наблюдения подтверждают трехкомпонентную структуру звездообразования: это аккрецирующий со всех сторон на звезду газ, протопланетный диск и… джеты – струи вещества, не поглощенные звездой, «бьющие» из полюсов новой звезды. Их формируют огромные магнитные поля, сопровождающие рождение звезды. По всей видимости, они играют одну из ключевых ролей в звездообразовании, унося вместе с веществом значительную часть момента импульса, позволяя гравитации победить центробежные силы и обеспечить необходимую плотность вещества в звезде для того, чтобы запустить процессы ядерного синтеза.

Что касается самого протопланетного диска, то, очевидно, он состоит из газа, оставшегося от туманности или взрыва сверхновой, и микроскопических (максимум в несколько миллиметров) частичек пыли. Причем масса газа примерно в сто раз превышает массу всей пыли в диске. Протопланетные диски, как правило, обладают радиальной симметрией, поэтому их свойства, такие как температура и поверхностная плотность, зависят только от расстояния до звезды – чем ближе к звезде, тем плотность больше, а температура выше. Молодые, только образовавшиеся протопланетные диски начинаются в непосредственной близости от звезды и простираются на десятки, а иногда и сотни астрономических единиц от нее.

Внутри дисков происходят довольно сложные и до сих пор вызывающие много вопросов процессы. Близкие друг к другу газопылевые потоки, аккрецирующие на звезду, внутри диска взаимодействуют между собой: притягиваются, трутся друг о друга, обмениваются импульсом и веществом, а их скорости уравниваются. Постепенно температура диска падает, наиболее тугоплавкие элементы конденсируются в зерна, свободно плавающие в газе. Постепенно зерна, сталкиваясь друг с другом, вырастают до сантиметровых размеров и оседают в центральной плоскости диска.


Загадки космоса. Планеты и экзопланеты

Рисунок 7. Протопланетный диск HL Тельца. Изображение получено в миллиметровом диапазоне волн с помощью системы телескопов ALMA


Процесс постепенного роста частиц до планет размером с Землю можно условно разбить на три этапа. В рамках первого этапа частицы нанометрового и микрометрового размеров собираются вместе, прилипают друг к другу и образуют пористые агломераты. Такой рост имеет предел. Лабораторные эксперименты [18] показывают, что пылинки в процессе взаимных ударов в протопланетном облаке могут вырасти только до сантиметровых размеров, сохраняя структуру благодаря электростатическим силам14. Однако дальше начинаются трудности. При соударениях сантиметровые частицы разрушаются, а не слипаются, и их дальнейший рост, преодоление размера в один метр, оказывается невозможным. Эта проблема ввиду множества неудовлетворительных попыток ее решить даже получила название – «проблема метрового барьера» [19].

Вход
Поиск по сайту
Ищем:
Календарь
Навигация