157. Conrad, C. D. (2010). A critical review of chronic stress effects on spatial learning and memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(5), 742–755. doi:10.1016/j.pnpbp.2009.11.003; Joëls, M., Karst, H., Krugers, H. J., & Lucassen, P. J. (2007). Chronic stress: Implications for neuronal morphology, function and neurogenesis. Frontiers in Neuroendocrinology, 28(2–3), 72–96. doi:10.1016/j.yfrne.2007.04.001; Mirescu, C., & Gould, E. (2006). Stress and adult neurogenesis. Hippocampus, 16(3), 233–238. doi:10.1002/hipo.20155; Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22(15), 6810–6818. doi:10.1523/JNEUROSCI.22-15-06810.2002.
158. Anand, K. S., & Dhikav, V. (2012). Hippocampus in health and disease: An overview. Annals of Indian Academy of Neurology, 15(4), 239–246. http://doi.org/10.4103/0972-2327.104323.
159. Hertel, J., König, J., Homuth, G. et al. (2017). Evidence for stress-like alterations in the HPA-axis in women taking oral contraceptives. Scientific Reports, 7(1), 1–14. doi:10.1038/s41598-017-13927-7; Gingnell, M., Engman, J., Frick, A. et al. (2013). Oral contraceptive use changes brain activity and mood in women with previous negative affect on the pill: A double-blinded, placebo-controlled randomized trial of a levonorgestrel-containing combined oral contraceptive. Psychoneuroendocrinology, 38(7), 1133–1144. doi:10.1016/j.psyneuen.2012.11.006; Petersen, N., & Cahill, L. (2015). Amygdala reactivity to negative stimuli is influenced by oral contraceptive use. Social Cognitive and Affective Neuroscience, 10(9), 1266–1272. doi:10.1093/scan/nsv010.
160. West, M., Coleman, P., Flood, D., & Troncoso, J. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet, 344(8925), 769–772. doi:10.1016/s0140-6736(94)92338-8.
161. Kempermann, G., Krebs, J., & Fabel, K. (2008). The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Current Opinion in Psychiatry, 21(3), 290–295. doi:10.1097/yco.0b013e3282fad375; Lagace, D. C., Donovan, M. H., Decarolis, N. A. et al. (2010). Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4436–4441. doi:10.1073/pnas.0910072107; Pittenger, C., & Duman, R. S. (2008). Stress, depression and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 33(1), 88–109. doi:10.1038/sj.npp.1301574.
162. Bradshaw, H. K. & Hill, S.E. (working paper). Oral contraceptive use predicts decreased performance on cognitively taxing tasks.
163. Grams, A. E., Gempt, J., Stahl, A., & Förschler, A. (2010). Female pituitary size in relation to age and hormonal factors. Neuroendocrinology, 92(2), 128–132. doi:10.1159/000314196; Pletzer, B., Kronbichler, M., Aichhorn, M. et al. (2010). Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Research, 1348, 55–62. doi:10.1016/j.brainres.2010.06.019; Pletzer, B., Kronbichler, M., & Kerschbaum, H. (2015). Differential effects of androgenic and anti-androgenic progestins on fusiform and frontal gray matter volume and face recognition performance. Brain Research, 1596, 108–115. doi:10.1016/j.brainres.2014.11.025; Petersen, N., & Cahill, L. (2015). Amygdala reactivity to negative stimuli is influenced by oral contraceptive use. Social Cognitive and Affective Neuroscience, 10(9), 1266–1272. doi:10.1093/scan/nsv010.
164. Macmaster, F. P., & Kusumakar, V. (2004). Hippocampal volume in early onset depression. BMC Medicine, 2. doi:10.1186/1741-7015-2-2.
165. McCurley, J. L., Mills, P. J., Roesch, S. C. et al. (2015). Chronic stress, inflammation, and glucose regulation in U.S. Hispanics from the HCHS/SOL Sociocultural Ancillary Study. Psychophysiology, 52(8), 1071–1079. http://doi.org/10.1111/psyp.12430.
166. Aschbacher, K., Kornfeld, S., Picard, M. et al. (2014). Chronic stress increases vulnerability to diet-related abdominal fat, oxidative stress, and metabolic risk, Psychoneuroendocrinology, 46, 14–22. doi:10.1016/j.psyneuen.2014.04.003.
167. Castelli, W. P. (1986). The triglyceride issue: A view from Framingham. American Heart Journal, 112(2), 432–437.
168. Nielsen, S. E., Ahmed, I., & Cahill, L. (2014). Postlearning stress differentially affects memory for emotional gist and detail in naturally cycling women and women on hormonal contraceptives. Behavioral Neuroscience, 128(4), 482–493. doi:10.1037/a0036687.
169. Roney, J. R. (in preparation). Cortisol increases in response to sexual attraction.
170. Maes, M., Galecki, P., Chang, Y. S., & Berk, M. (2011). A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(3), 676–692. doi:10.1016/j.pnpbp.2010.05.004; Zunszain, P. A., Anacker, C., Cattaneo, A. et al. (2011). Glucocorticoids, cytokines and brain abnormalities in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(3), 722–729. doi:10.1016/j.pnpbp.2010.04.011.
171. Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53(4), 865–871. doi:10.1016/S0022-3999(02)00429-4; Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30(10), 1010–1016. doi:10.1016/j.psyneuen.2005.04.006.