Книга Третья промышленная революция, страница 64. Автор книги Джереми Рифкин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Третья промышленная революция»

Cтраница 64

Законы Ньютона, описывающие движение тела, реально ничего не говорят нам о механике экономической деятельности и являются тонкой тростинкой, за которую уцепилась целая дисциплина. Они фактически дают ложное представление о развитии экономической деятельности, поскольку не учитывают течение времени и необратимость событий. В учении Ньютона о природе все механические процессы теоретически являются обратимыми. В ньютоновской математике на каждое +Т должно приходиться –Т. Взять хотя бы классический пример с бильярдными шарами, которые соударяются друг с другом на столе. В ньютоновской физике любое действие на столе теоретически обратимо, поскольку законы движения тел не принимают во внимание течения времени. В реальной экономике, однако, существуют только необратимые события — получение энергии и материальных ресурсов, их трансформирование, использование и выбрасывание.

Почему законы термодинамики управляют всей экономической деятельностью

Лишь во второй половине XIX века, когда физики сформулировали первый и второй законы термодинамики, экономисты получили научную базу для точного описания экономической деятельности. К этому времени, однако, экономическая доктрина настолько погрязла в аналогиях с ньютоновской механикой, что представители экономической науки уже не могли отстраниться от нее, хотя ее допущения по большей части были неприменимы к экономической практике.

Первый и второй законы термодинамики гласят, что «совокупная энергия Вселенной постоянна, и что совокупная энтропия непрерывно возрастает». Первый закон термодинамики, закон сохранения энергии, утверждает, что энергия не создается и не уничтожается, то есть количество энергии во Вселенной не изменяется с начала времен и будет оставаться таким же до скончания времен. Хотя количество энергии неизменно, энергия постоянно изменяет свою форму, но в одном направлении — она переходит из доступной формы в недоступную. Здесь на сцену выходит второй закон термодинамики. В соответствии со вторым законом энергия всегда течет от горячего к холодному, концентрируется, чтобы рассеяться, упорядочивается, чтобы прийти в беспорядок.

Чтобы понять, как первый и второй законы работают в реальном мире, представьте себе горящий кусок угля. Энергия, заключенная в угле, никуда не исчезает. Она трансформируется в диоксид углерода, диоксид серы и другие газы, которые рассеиваются в атмосфере. Хотя энергия сохраняется, мы не можем вернуть рассеянную энергию обратно в кусок угля и использовать ее еще раз. Рудольф Клаузиус, немецкий ученый, ввел термин энтропия в 1868 г. для обозначения энергии, которую больше нельзя использовать.

Клаузиус понял, что работа осуществляется, когда энергия переходит из высококонцентрированного состояния в рассеянное состояние, другими словами, от среды с высокой температурой к среде с более низкой температурой. Так, паровой двигатель работает потому, что одна часть машины очень горячая, а другая — очень холодная. Переход энергии от области с высокой температурой к области с более низкой температурой сокращает количество энергии, доступной для выполнения работы в будущем. Если раскаленную докрасна кочергу вынуть из печи, она немедленно начнет остывать, поскольку тепло течет от горячей поверхности к холодной окружающей среде. Через некоторое время кочерга приобретет такую же температуру, как и окружающий воздух. Физики называют это равновесным состоянием — разница в уровнях энергии исчезает, и работа больше выполняться не может.

Сразу хочется спросить: «А почему нельзя повторно использовать всю эту рассеянную энергию?» Частично можно, но для этого потребуется дополнительная энергия. Ее использование повышает общую энтропию.

Нередко, когда я читаю лекции по термодинамике, возникает вопрос, не слишком ли пессимистичны мои взгляды, ведь Солнце, наш источник энергии, будет светить еще миллиарды лет и давать достаточно энергии для всего живущего на земле так долго, как можно только представить. Да, это правда. Однако есть другой источник энергии, который значительно более ограничен, — энергия, заключенная в материальной форме в ископаемом топливе и металлических рудах. Эти виды энергии фиксированы и конечны, по крайней мере с точки зрения геологического времени, которое важно для нашего выживания как вида.

Физики говорят, что с точки зрения термодинамики Земля представляет собой практически замкнутую систему по отношению к Солнцу и Вселенной. Термодинамические системы можно разделить на три типа: открытые системы, которые обмениваются и энергией, и материей; закрытые системы, которые обмениваются энергией, но не материей; и изолированные системы, в которых нет обмена ни материей, ни энергией. Земля по отношению к Солнечной системе является относительно закрытой. Иначе говоря, она принимает энергию от Солнца, однако за исключением нечасто падающих метеоритов и космической пыли получает очень мало материи из окружающего пространства.

Ископаемое топливо представляет собой яркий пример материальной формы связанной энергии. Она во всех отношениях конечный ресурс, который быстро истощается и, скорее всего, никогда не восстановится на Земле, по крайне мере в пределах временно́го горизонта, представляющего интерес для нашего биологического вида. Ископаемое топливо формировалось в течение миллионов лет в результате анаэробного разложения умерших организмов. При сжигании этого топлива использованная энергия в форме газов больше непригодна для совершения работы. Хотя теоретически когда-нибудь в отдаленном будущем — через миллионы лет — процесс анаэробного разложения может привести к появлению сопоставимых запасов ископаемого топлива, перспектива этого настолько отдаленна, что надеяться на нее смысла нет.

Редкоземельные элементы — еще один пример внутренних термодинамических ограничений, существующих на земле. Существуют 17 редкоземельных металлов — скандий, иттрий, лантан, церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий и лютеций, которые используются в различных промышленных и технических процессах и необходимы для технологий и продуктов, имеющих критическое значение для выживания и процветания общества. Они называются редкими то той причине, что их запасы ограничены и быстро истощаются в результате использования для удовлетворения потребностей населения и глобальной экономики.

Альберт Эйнштейн как-то задался вопросом, какие законы науки вряд ли будут опровергнуты или значительно изменены будущими поколениями ученых. По его мнению, испытание временем вероятнее всего выдержат первый и второй законы термодинамики. Вот что он написал:

Теория тем убедительнее, чем проще ее предпосылки, чем более разнообразны предметы, к которым она относится, и чем более широк диапазон ее применения. Именно по этой причине классическая термодинамика производит на меня глубокое впечатление. Это единственная физическая теория универсального характера, которая, по моему убеждению, с точки зрения применимости ее основных положений никогда не будет опровергнута .

Несмотря на то что трансформация энергии во всех ее проявлениях составляет фундамент всех видов экономической деятельности, мало кто из экономистов изучал термодинамику. И лишь единицы профессионалов пытались взглянуть на экономическую теорию и практику с точки зрения законов термодинамики.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация