Романо, профессор и известный экономист, человек, дважды занимавший кресло премьер-министра Италии, и один из самых уважаемых европейских политиков, ничего не ответил. Он сидел, подперев подбородок рукой, словно хотел вникнуть в смысл сказанного, и молчал, а затем вернул мяч мне. «Есть идеи?» — спросил он. «Да, — ответил я. — Нам нужно срочно вкладывать деньги в исследования и разработку технологий аккумулирования возобновляемой энергии. Если этого не сделать, мы не сможем эксплуатировать возобновляемые источники энергии в масштабах, необходимых для постуглеродной эры. Без технологии аккумулирования нас ждет провал». (Восемь лет спустя Билл Гейтс повторил мысль о том, что экономичный, надежный накопитель — это ключ к устойчивому будущему.)
Энергетические и коммунальные компании уже брюзжат по поводу того, что, как только 15–20% электроэнергии будут поступать от возобновляемых источников, сеть станет зависимой от капризов погоды, и нас ждут периодическая нехватка мощности и нарушения энергоснабжения. У нас уже есть целый ряд перспективных технологий аккумулирования энергии, включая проточные батареи, маховики, конденсаторы и гидроаккумуляторы. Я проанализировал различные возможности и пришел к выводу, что, хотя нужно развивать все существующие технологии аккумулирования энергии, наиболее перспективным следует считать использование водорода.
Ученые и инженеры давно смотрят на водород как на Святой Грааль постуглеродной эры. Это самый легкий и распространенный элемент во вселенной — из него состоят звезды, — который не содержит ни единого атома углерода. Водород есть на Земле повсеместно, однако он редко встречается в свободной форме. Обычно он содержится в других источниках энергии. Его можно, например, извлечь из угля, нефти и природного газа. На практике львиную долю водорода, используемого в промышленных и коммерческих целях, получают из природного газа. Водород можно также получать из воды. Каждый помнит опыт с электролизом воды на уроке химии в средней школе. Два электрода, положительный и отрицательный, погружают в чистую воду с добавкой электролита для улучшения проводимости. Когда к электродам подают постоянный ток, на отрицательном электроде (катоде) выделяются пузырьки водорода, а на положительном электроде (аноде) — пузырьки кислорода. Ключевой проблемой является экономическая целесообразность использования безуглеродных возобновляемых источников вроде солнечной энергии, энергии ветра и воды, геотермальной энергии для генерирования электричества, необходимого для разложения воды на водород и кислород.
Я напомнил Романо, что уже почти полвека наши астронавты летают вокруг Земли на космических кораблях, энергию которым дают топливные элементы (то есть водород), и сказал, что пора вернуть эту технологию на Землю и использовать ее для аккумулирования энергии от возобновляемых источников.
Вот как это работает. Когда солнце освещает фотоэлектрические преобразователи на крыше здания, они генерируют электричество, большая часть которого сразу же потребляется в этом здании. Если же появляется избыток электроэнергии, то его можно направить на электролиз. Полученный водород собирается в накопительной системе. Когда солнца нет, водород превращается в электроэнергию в топливных элементах.
Романо заинтересовался. Он кое-что знал о водороде. Его старший брат Витторио, известный физик-ядерщик, был членом Европарламента и экспертом по этому вопросу. Мы с Витторио стали друзьями, и он взял на себя важную задачу просвещения законодателей и делового сообщества в области водородной технологии и ее преимуществ.
В течение нескольких недель после нашей встречи я подготовил для Романо стратегический меморандум по возможностям использования водорода в качестве накопителя возобновляемой энергии. Президент Проди времени не терял. В июне 2003 г. на брюссельской конференции он объявил о выделении €2 млрд на программу исследования водорода с целью подготовки Европы к переходу на водородную экономику. Во вступительном слове Проди объяснил историческую значимость использования водорода в качестве накопителя энергии для создания инфраструктуры третьей промышленной революции: «Давайте прямо скажем, что делает европейскую водородную программу принципиально важной. Это провозглашенная нами цель постепенного перехода к полностью интегрированной водородной экономике, основанной на возобновляемых источниках энергии, к середине нынешнего столетия»
. Так был заложен третий столп.
В 2006 г. я подготовил второй меморандум по этому вопросу для канцлера Меркель, где предлагал Германии начать собственную программу исследований и разработок. Мое предложение нашло поддержку, и Германия выделила значительные средства на создание новой технологии аккумулирования энергии. В 2007 г. Еврокомиссия под председательством Баррозу объявила о вложении €7,4 млрд в частно-государственное партнерство — Совместную технологическую инициативу — с целью перехода от исследований и разработок в области водородной технологии к реализации этой технологии по всей Европе
.
Первые три столпа — переход на возобновляемые источники энергии, превращение зданий в электростанции и частичное накопление энергии в виде водорода — требуют создания четвертого: способа распределения энергии, вырабатываемой миллионами зданий, между сообществами в Европе.
Энергетический Интернет
Идея создания интеллектуальной энергосети, хотя и набирает популярность, пока еще не стала частью официальных программ ЕС или стран-членов. IBM, Cisco Systems, Siemens и GE стремятся застолбить место в этой области, надеясь получить новую супермагистраль для транспортировки электронов. Однако энергосеть должна превратиться в информационно-энергетическую сеть, которая позволяет миллионам людей, производящих собственную энергию, делиться излишками друг с другом.
Интеллектуальная энергетическая сеть затронет практически все стороны нашей жизни. Дома, офисы, фабрики и транспортные средства будут непрерывно поддерживать связь друг с другом, делиться информацией и энергией 24 часа в сутки семь дней в неделю. Интеллектуальные коммунальные сети будут получать информацию об изменениях погоды и непрерывно регулировать поток электроэнергии и тепла в помещениях в зависимости от температуры на улице и запросов потребителей. Сеть станет также управлять бытовой техникой, например при достижении пиковой нагрузки программное обеспечение сможет сокращать число полосканий в стиральной машине и, таким образом, экономить электроэнергию.
Стоимость электроэнергии в сети меняется в течение суток, установка в каждом доме цифровых счетчиков, снимающих показания в реальном времени, даст возможность перейти к динамическому ценообразованию и позволит потребителям автоматически повышать или понижать энергопотребление в зависимости от цены. Потребители, которые согласятся на небольшую корректировку энергопотребления, получат скидки при оплате энергии. Динамическое ценообразование также подскажет местным энергопроизводителям, когда лучше поставлять электроэнергию в сеть, а когда лучше уйти из сети.
Правительство США недавно выделило средства на создание интеллектуальной энергосети в стране. Они должны пойти на установку цифровых счетчиков, датчиков для мониторинга передающей сети, разработку технологий аккумулирования энергии, создание высокотехнологичной системы распределения электроэнергии и в конечном итоге превратить существующую энергосеть в энергетический Интернет. CPS Energy в Сан-Антонио, штат Техас, Xcel Utility в Боулдере, штат Колорадо, а также PG&E, Sempra и Southern ConEdison в штате Калифорния должны в ближайшие несколько лет заложить основу интеллектуальной энергосети.