Книга Новый физический фейерверк, страница 64. Автор книги Джирл Уокер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Новый физический фейерверк»

Cтраница 64

ОТВЕТ • Хотя при проектировании гоночных машин учитываются законы аэродинамики, значительное сопротивление со стороны воздушного потока остается. Одна из причин аэродинамического сопротивления — разность давлений между передней и задней частями машины. Набегающий спереди поток воздуха создает область высокого давления. Сзади поток воздуха распадается на вихри, уменьшающие давление. Эта разность давлений замедляет движение автомобиля и увеличивает затраты топлива на поддержание высокой скорости.

Когда машины едут друг за другом, выигрывают обе. Замыкающая машина препятствует формированию вихрей позади лидера, что уменьшает разность давлений между капотом и задней частью его машины. Уменьшается и напор воздуха на капот машины, идущей за лидером, так что и для нее эта разность давлений меньше.

Водитель идущей сзади машины может обойти лидера, используя маневр, который называют рогатка: он должен немного отстать от передней машины, чтобы позади нее образовались вихри. Вихри низкого давления замедляют переднюю машину, а задняя машина устремляется вперед. Тщательно рассчитав время, водитель задней машины может объехать лидера и вырваться вперед.

Говорят, Джонсон-младший [26] в 1960 году первым использовал аэродинамические эффекты во время гонки «Дайтона 500», проводимой Национальной ассоциацией гонок серийных автомобилей (NASCAR). Он выиграл эти гонки, хотя считалось, что по скорости его машина уступает машинам остальных участников.

Создание тяги существенно и в других видах спорта, особенно в велогонках. Животные тоже используют силу тяги. Пример: мама-утка переплывает пруд впереди выстроившихся за ней в цепочку утят. Конечно, утка двигается не столь быстро, чтобы заботиться об аэродинамике, но выигрывают утята, плывущие вслед за мамой-уткой.

2.3. Аэродинамика несущихся мимо поездов

Скоростные поезда, несущиеся со скоростью свыше 270 км/ч, разрезают воздух и создают волны сжатия, благодаря чему образуются потоки воздуха, обтекающие поезд с боков и сверху. Что происходит, когда такой поезд проскакивает через тоннель? А что бывает, когда два скоростных поезда проносятся по соседним путям в разных направлениях? Представляет ли скоростной поезд, идущий без остановок, опасность для человека, стоящего на краю платформы?


ОТВЕТ • Описать, как поезд на большой скорости проезжает через тоннель, проще, полагая, что поезд покоится, а воздух вокруг него движется. Когда воздух нагнетается в ограниченное пространство между поездом и стенками тоннеля, его скорость увеличивается. На увеличение скорости требуется энергия, источником которой является запасенная внутренняя энергия, зависящая от давления. Следовательно, давление падает. Пассажир поезда ощущает это падение давления: воздух в ушах давит изнутри на барабанную перепонку. Подобное ощущение испытываешь в быстро взлетающем самолете.

Когда встречаются два поезда, несущиеся навстречу друг другу, давление воздуха между ними тоже понижается. Если это происходит внутри тоннеля, давление падает еще больше. В прежние времена случалось, что при увеличении скорости разъезжавшихся встречных поездов их окна выдавливало наружу.

Неважно, едут ли поезда через тоннель или по открытой местности, структура обтекающих их потоков воздуха очень сложна. Описать ее можно, только используя компьютерное моделирование. Однако понижение давления в пространстве между поездами можно объяснить достаточно просто: каждый из поездов «вытягивает» оттуда воздух, а когда воздуха меньше, давление понижается.

Когда проезжает скоростной поезд, волна сжатия, распространяющаяся впереди поезда, и сильно турбулентный воздушный поток за ним могут сбить с ног человека, стоящего на платформе, или даже бросить его на рельсы.

2.4. Обрушение старого моста через Такома-Нэрроуз

[27]

Седьмого ноября 1941 года на пленку был снят один из самых впечатляющих документальных фильмов, который часто показывают физикам. Речь идет о разрушении старого моста через Такома-Нэрроуз. Хотя ветер в то утро был не таким уж сильным (около 68 км/ч), этот прочный мост разорвало на части через несколько часов после того, как начались сильные крутильные колебания.

Поскольку мост часто изгибался, становясь похожим на американские горки, строители окрестили его «Галопирующая Герти». Что и говорить, после официального открытия моста автомобилисты съезжались сюда ради острых ощущений: колебания иногда были такой силы, что водители теряли друг друга из виду. Хотя многие считали, что мост развалился именно из-за «галопирования», оно практически не было связано с его обрушением. Что же на самом деле вызвало крушение моста?


ОТВЕТ • Опоры моста имели форму узкой и высокой буквы H с армирующей балкой вдоль каждой из сторон. При ветре воздушный поток, налетающий на мост с наветренной стороны, приводил к образованию вихрей сверху и снизу горизонтальных секций моста. Распространяясь вдоль горизонтальных секций, эти вихри становились причиной вибрации моста: его вертикальные колебания напоминали развевающийся на ветру флаг. Ошибочной была сама конструкция моста (хотя тогда этого никто знать не мог), имевшая плохую сопротивляемость как вибрациям, так и крутильным колебаниям (скручиванию). Это отчетливо видно на кинопленке, запечатлевшей обрушение моста.

После того как колебания стали очень сильными и опасными, два человека были вынуждены на четвереньках уползти с моста. Один из них, профессор, попытался спасти брошенную на мосту собаку, но ему пришлось отступить: перепуганная собака попыталась его укусить. На пленке видно, как он возвращается к машине, стараясь двигаться по области малых колебаний, вдоль линии на оси моста, вокруг которой он скручивался. Вскоре после этого одна из секций моста упала. Вибрации прекратились, но затем возобновились снова, и оставшиеся пролеты моста рухнули в реку.

Хотя многие преподаватели физики используют разрушение этого моста как впечатляющий пример резонанса, оно не связано ни с резонансом, ни с галопированием. Обрушение стало следствием вибраций и кручений. На самом деле причиной был ветер. Его направление практически не менялось, не было порывов ветра с частотой, близкой к собственной частоте колебаний моста. Вокруг моста действительно были завихрения (вихри Кармана), сродни вихрям вокруг телеграфного провода при ветре. Такие вихри могут вызвать сильные колебания, если частота, при которой они появляются, совпадет с собственной частотой колебаний провода. Нарастание амплитуды колебаний происходило из-за положительной обратной связи: при смещении полотна моста сила давления ветра на него возрастала. В авиации этот эффект называется «флаттер».

Вход
Поиск по сайту
Ищем:
Календарь
Навигация