Книга Она смеется, как мать, страница 178. Автор книги Карл Циммер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Она смеется, как мать»

Cтраница 178

Даже редактирование генов с помощью CRISPR не меняет эту последовательность событий. Когда ученые начали работать с CRISPR на мышах и физалисе, потомки тех по-прежнему наследовали ДНК. Существовало единственное отличие – некоторые из аллелей не возникли самостоятельно вследствие мутаций, а были вставлены исследователями. Это как если бы ученые изменили направление русла, но река по нему все равно бы текла.

Однако некоторые недавние научные достижения могут интригующим образом изменить направление передачи наследственности. В одной из работ исследователи случайно пробили вейсмановский барьер.

__________

В 1999 г. японский биолог Синъя Яманака, надеясь оставить свой след в переполненной научной области, создал новую лабораторию в Институте науки и технологий Нары [1147]. До того как переехать в Нару, Яманака обнаружил несколько генов, которые были активны на ранних этапах развития эмбриона мыши. Много исследователей изучало эмбриональное развитие этого зверька, выясняя, как же происходит специализация клеток. Они определяли белки, которые могли подтолкнуть стволовую клетку к тому, чтобы она стала мышечной, нейроном или клеткой какого-то другого типа. В 1990-х гг. исследования эмбриональных клеток дали надежду на создание нового способа борьбы с заболеваниями. Ученые брали одну клетку из эмбриона, полученного в репродуктивной клинике, и выращивали из нее в лаборатории колонию эмбриональных клеток. С помощью правильных химических сигналов удавалось в течение полугода поддерживать размножение таких клеток в культуре. Некоторые ученые тогда предсказывали, что с использованием подобного подхода окажется возможным выращивать нужные ткани. Страдающим болезнью Паркинсона можно было бы подсаживать здоровые нейроны. Перенесшим инфаркт врачи были бы в состоянии восстанавливать сердечную мускулатуру с помощью новых клеток.

Яманака подумал, что если он присоединится к этой гонке, то его затопчут в толпе. Поэтому он решил развернуться на 180 градусов. Отказавшись от поиска способов превращать эмбриональные клетки во взрослые, он попытался сделать из взрослых клеток эмбриональные.

Никто до него не пытался исполнить такой трюк, и на то были свои причины. Представлялось очевидным, что повернуть развитие вспять невозможно. Если вы проследите родословную, показывающую происхождение каждой клетки взрослого тела от зиготы, вы пройдете длинным и извилистым путем. Там будут сотни и тысячи точек ветвления на каждом участке, где клетка делилась на две. И в каждом клеточном поколении будет свой набор химических сигналов, благодаря которому в следующем поколении окажется уже другой набор веществ. Для превращения клетки кожи в эмбриональную предстояло, похоже, пройти весь этот путь назад, прокрутив всю биохимию в обратную сторону.

Однако Яманака полагал, что эту нашу внутреннюю наследственность вообще-то не так уж и сложно преодолеть. Такую надежду в него вселили некоторые эксперименты прошлых лет. Например, в 1960 г. британский биолог Джон Гёрдон разрушил ядро в яйцеклетке лягушки и заменил его ядром из клетки эпителия кишечника этого животного. Яйцеклетка начала делиться и в конце концов развилась во взрослое животное.

В этом эксперименте Гёрдон впервые клонировал животное. И в процессе работы он доказал, что гены во взрослой клетке возможно перепрограммировать так, чтобы снова создать эмбрион. В 1996 г. шотландский эмбриолог Иэн Уилмут совместно со коллегами повторил практически то же самое, но с овцой, создав клон по имени Долли.

Яманака задумался, а нет ли более простого способа перестроить взрослую клетку так, чтобы она стала эмбриональной. С целью понять, в чем заключаются особенности эмбриональной клетки, он проанализировал, какие гены активны только на эмбриональной стадии развития и выключены во взрослой клетке. Яманака обнаружил, что некоторые из этих генов кодировали белки, которые действовали как главные переключатели. Они прикреплялись сразу ко многим генам и включали или выключали их. Исследователь предположил, что можно заполнить соматические клетки такими белками. Тогда они смогут взять гены под контроль, заставив клетки снова вернуться в эмбриональное состояние.

Ученый понимал, что шансов на успех немного. Хотя он знал о нескольких белках, которые были активны в эмбриональных клетках, он понятия не имел, сколько всего белков ему нужно учесть. Это могли быть десятки и даже сотни. Яманака рассказывал: «В то время мы думали, что выполнение проекта займет 10, 20, 30 лет и даже больше» [1148].

Яманака основал свою лабораторию, чтобы начать поиск этих белков в эмбрионах мыши. За пять лет ему с сотрудниками удалось найти две дюжины. Затем ученые проверили каждый ген, чтобы понять, способен ли он перепрограммировать взрослую клетку. Исследователи по очереди добавляли во взрослые клетки кожи мыши дополнительные копии каждого из этих генов. Это приводило к появлению новых молекул исследуемых белков. Но взрослая клетка упорно продолжала оставаться взрослой.

Когда в лаборатории стало нарастать разочарование, аспирант Кадзутоси Такахаси предложил прекратить тестировать белки по одному, а вместо этого наполнить клетку сразу смесью из обеих дюжин. Возможно, такая комбинация белков могла бы хоть чуть-чуть повлиять на клетку. Даже крошечного изменения было бы достаточно, чтобы убедиться, – их работа была не напрасной.

Яманака благословил этот эксперимент, хотя и был уверен, что Такахаси ошибается. Аспирант внедрил все 24 белка в клетки кожи и стал ждать, что из этого выйдет. Спустя четыре недели Такахаси пришел к Яманаке с новостями. Эти взрослые клетки кожи превратились в нечто похожее на полноценные эмбриональные клетки.

«Я подумал, что это, должно быть, какая-то ошибка», – рассказывал Яманака. Он просил Такахаси повторить эксперимент несколько раз. Снова и снова клетки становились эмбриональными.

Достаточно впечатляло уже и то, что эти клетки выглядели как эмбриональные и синтезировали основные эмбриональные белки. Но Яманаку интересовало, ведут ли они себя так же, как эмбриональные. Его группа встроила несколько перепрограммированных клеток в мышиные эмбрионы на ранней стадии развития. Из этих эмбрионов получились здоровые мышата, и ученые обнаружили, что перепрограммированные клетки дали начало нормальным взрослым клеткам в разных частях тела.

Успех натолкнул Яманаку на мысль, что необязательно заполнять клетки всеми 24 белками. Он начал новый эксперимент, подбирая смесь, в которую входили только некоторые из них. Его сотрудники обнаружили, что достаточно всего четырех белков. Совместно с Джеймсом Томсоном из Висконсинского университета в Мадисоне Яманака показал, что после такого простого воздействия человеческая клетка становится эмбриональной.

В лабораторных отчетах исследователь называл полученные перепрограммированные клетки индуцированными плюрипотентными стволовыми клетками. К тестированию этих клеток приступили и другие исследователи – в надежде, что они окажутся более подходящими для лечения заболеваний, чем эмбриональные. Очень легко себе представить, как врачи берут у пациента клетки кожи, перепрограммируют их, а затем получают из индуцированных плюрипотентных стволовых клеток тот тип зрелых клеток, который им нужен. А поскольку это клетки самого пациента, можно не беспокоиться, что наступит отторжение чужеродной ткани.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация