В развитии науки можно увидеть множество аналогий с биологической эволюцией. Разные теории создавались в разное время, когда экспериментальные данные находились на разном уровне. Целью в первую очередь было (и остается) объяснение конкретных, наблюдаемых сейчас фактов. Именно так происходило совершенствование и развитие. При этом новые модели в той или иной степени строились на основе уже имеющихся. Хотя иногда случались и научные революции, значительно менявшие текущую парадигму. Так же, как в мире живых существ, мы видим, что более продвинутые теории, имеющие более широкую область применимости и учитывающие тонкие эффекты, часто не вытесняют полностью простые, но эффективные старые подходы. Так, мы продолжаем активно пользоваться простой ньютоновской физикой там, где эффекты теории относительности малы, т. е. ими можно пренебречь.
Рассмотрим, например, небесно-механические задачи. С некоторой долей уверенности можно утверждать, что именно с описания видимого движения Солнца, Луны и планет начинаются современные естественные науки.
Первые модели движения небесных тел были основаны на идеализированном качественном рассуждении о том, как должен быть устроен мир. Оказалось, что это не очень хорошая идея – задаваться жесткими парадигмами, вытекающими из общефилософских и/или идеологических источников. В частности, из-за такого подхода на эволюционном древе мы видим и тупиковые ветви. Геоцентрическая система мира – одна из них.
В оправдание древних надо сказать, что с чего-то надо было начинать, и это сейчас, имея за плечами сотни лет развития науки, нам легко их критиковать. Не исключено, что в чем-то мы и сами пока блуждаем в потемках. Но главное, что ранние схемы, описывающие поведение небесных тел, были кинематическими. Ничего не было известно о природе и характере тех сил, которые определяют их движение.
Тем не менее даже при таком подходе, детально анализируя большой комплекс подробных и точных наблюдательных данных
[20], да еще с использованием самой передовой на тот момент математики, Иоганн Кеплер смог показать, что планеты движутся по эллиптическим орбитам, а центральное тело находится не в центре, а в одном из фокусов эллипса. Итогом этого анализа явились три закона Кеплера.
Вывод этой троицы на основе понимания физических основ движения планет стал возможен только с появлением ньютоновского закона всемирного тяготения. Стало ясно, что движением планет управляет гравитация. Уточнился и третий закон Кеплера. Теперь в него добавилась масса центрального тела и его спутника. Однако Кеплер не случайно смог описать данные наблюдений Тихо Браге без этих дополнительных членов уравнения. В Солнечной системе масса Солнца во много раз превосходит массу любой планеты и даже сумму их масс. Поэтому для оценок мы иногда продолжаем использовать третий закон Кеплера в оригинальной формулировке: квадраты периодов обращения относятся друг к другу, как кубы больших полуосей орбит
[21].
После появления теории Ньютона стало возможным решать разнообразные задачи о движении небесных тел, поскольку теперь можно было записать уравнения для действующих между ними сил и решать их, получая на выходе скорости и координаты, меняющиеся со временем. Разумеется, из-за взаимного влияния орбиты теперь не являются идеальными эллипсами
[22]. А если комбинация масс и расстояний такова, что на интересующий нас объект сравнимые влияния оказывают хотя бы два тела (например, Солнце и Юпитер, если речь о какой-нибудь комете или астероиде), то траектория может стать очень сложной.
Анализ таких движений существенно способствовал эволюции физики и математики. Для решения актуальных задач разрабатывались новые методы, открывались новые закономерности. Это было стадией постепенной эволюции, но впереди ученый мир ждало очередное потрясение, сравнимое с созданием ньютоновской механики. Речь, конечно же, о появлении специальной (СТО) и общей (ОТО) теорий относительности.
В начале XX века с интервалом чуть более 10 лет появились две теории, созданные одним автором. Обе радикально изменили физику, а кроме того, дали сильнейшую мотивацию для развития сразу нескольких разделов математики.
Первая теория касалась кинематики при движении с большой скоростью. Что значит большой? Сравнимой со скоростью света. Если нас не интересует точность выше 1 %, то мы можем пользоваться обычными формулами вплоть до скоростей порядка 10 % от световой. Но чем ближе мы подбираемся к пределу, тем заметнее новые эффекты: замедление времени, изменение длины и др.
Специальная теория относительности быстро была принята физиками. За короткий срок удалось проверить ее предсказания, прекрасно совпавшие с данными измерений. Несмотря на всю свою парадоксальность (относительность одновременности, парадокс близнецов и т. д.), физическая теория верна. Давайте потратим немного времени на то, чтобы проговорить, что мы подразумеваем под словами «физическая теория верна».
Если верна СТО, значит ли это, что старая кинематика неверна? Не значит. Формулы Галилея прекрасно работают при низких скоростях. Конечно, с одной стороны, повышая точность измерений, мы при любой (не нулевой) скорости можем обнаружить отклонения, но тем не менее прекрасно решим задачу «из пункта Ц в пункт Ы вышел пешеход», пользуясь обычными формулами сложения скоростей. С другой стороны, если сейчас нам не удается увидеть отклонений от СТО, то означает ли это, что мы никогда их не увидим? Не означает: может, да, а может, и нет. Для физической теории (в отличие от математической теоремы) важна область применимости. Если в математике всегда можно четко очертить условия, относящиеся к теореме, то в физике это удается сделать только постфактум, когда обнаружено, что есть случаи, когда теория перестает работать. Тогда ее надо менять на более общую, в которой, в свою очередь, старая рассматривается как предельный случай
[23] (например, при стремлении скорости к нулю в случае СТО и преобразований Галилея).
Общая теория относительности делает еще один шаг. По сути, это теория гравитации. Она существенно сложнее СТО, отчасти потому, что базируется на более сложных математических структурах. К ключевым свойствам ОТО можно отнести геометрическое описание гравитации и принцип эквивалентности, гласящий, что гравитационная и инертная масса равны друг другу. Он иллюстрируется известным эйнштейновским мысленным экспериментом с лифтом. Находясь в замкнутой коробке, невозможно определить, движется ли она с постоянным ускорением или покоится в однородном гравитационном поле.