Популяционное моделирование помогает на основе известных свойств объектов предсказать параметры более слабых (т. е. пока не наблюдаемых) объектов
[129]. При этом, разумеется, мы уже не проверяем начальные распределения и эволюционные законы, а доверяем им и используем их для получения нового знания. Конечно, доверяя, мы понимаем, что какие-то неточности и неопределенности там все равно остаются, поэтому результаты популяционных расчетов будут отличаться от реальных данных, которые в будущем получит новый инструмент. И тогда мы вернемся к задаче номер один – уточнению распределений и уравнений эволюции.
Например, параметры установок LIGO и VIRGO рассчитывались исходя из данных по известным системам: нейтронная звезда плюс нейтронная звезда. А долгоживущие системы из нейтронной звезды и черной дыры или двух черных дыр неизвестны до сих пор. Тем не менее удалось достаточно точно предсказать ожидаемый темп слияний этих объектов во вселенной, что позволило зарегистрировать сигнал практически сразу же после выхода установок на плановую чувствительность.
А теперь дальнейшие наблюдения гравитационно-волновых всплесков позволяют набрать статистику по таким системам и существенно уточнить модели эволюции тесных двойных систем, используя совершенно новый канал информации. Соответственно, для популяционных расчетов, которые будут проводиться с целью предсказать темп событий на гравитационно-волновых антеннах нового поколения, мы сможем использовать более точные входные данные, а значит, получим и более точные результаты.
В качестве примера рассмотрим более подробно популяционный синтез других объектов – экзопланет. На сегодняшний день самые известные работы в области популяционного синтеза экзопланет относятся к процессу их формирования и ранней эволюции в протопланетном диске
[130]. Здесь целью является предсказание свойств сформировавшихся планет, переживших бурный этап роста и миграции в газопылевом диске материнской звезды. Начальными условиями служат параметры звезд и протопланетных дисков. Эволюционные законы связаны с поведением диска, процессами формирования и роста планет и их взаимодействием друг с другом и диском.
Масса звезды определяет гравитационный потенциал на заданном расстоянии от нее (вдобавок масса диска коррелирует с массой звезды). Кроме того, звезда является источником излучения, которое и нагревает диск, и испаряет его, а светимость в первую очередь зависит от массы. Наконец, химический состав звезды задает состав диска, что крайне важно для формирования планет
[131].
Химический состав диска говорит нам, сколько там газа, пыли и льда (это три основные составляющие планет). От него же зависит поглощение излучения в диске, что будет определять распределение температуры в нем. От массы диска зависит, сколько вещества доступно для формирования планет и как они будут перемещаться по диску.
Законы эволюции в случае формирования и ранней истории планетных систем известны плохо. Отчасти этим данная область исследований и интересна – тут много загадок! В деталях пока неясно, как зародыши планет достигают размеров в сотни метров. Плохо понятно, как формирующиеся планеты перемещаются по газопылевому диску за счет гравитационного взаимодействия с ним. Список можно продолжать и продолжать.
Сложность процессов открывает возможность для постепенного совершенствования моделей. Проследив короткую историю популяционных расчетов образования планет, можно увидеть процесс последовательного приближения к все более и более адекватным сценариям. Вначале применяются модели, неизбежно вызывающие воспоминание о «сферическом коне в вакууме», но довольно быстро они начинают усложняться, и «искусственный мир молодых экзопланет» становится все более похожим на мир реальный.
Современные расчеты неплохо воспроизводят многие особенности распределения планет по массам и расстояниям от своих звезд. Однако, с одной стороны, остаются проблемы в согласовании теоретических построений с наблюдениями, а с другой – пока не хватает данных с телескопов для достаточно полной картины. В ближайшие годы продолжающиеся наземные наблюдения изменения лучевых скоростей звезд позволят обнаруживать планеты на довольно больших расстояниях от звезд. Находящийся на орбите спутник TESS откроет тысячи новых экзопланет, в первую очередь с орбитальными периодами меньше нескольких месяцев. Спутник Gaia должен представить свои данные по экзопланетам на основе астрометрических методов. Темп открытий в этой области велик и постоянно растет, поэтому нужны и новые модели популяционного синтеза.
Уже сейчас они учитывают многие детали изменения параметров диска, постепенного роста планет и планетезималей
[132], взаимодействий между ними, миграции планет и т. д. Постепенно становится понятным, в каких частях диска начинают образовываться планеты разных типов.
Условия в разных частях диска отличаются друг от друга. Меняются температура и плотность, меняется состав. Все вместе это приводит и к изменению состояния вещества, от чего зависит процесс роста планет. Важным понятием является так называемая снеговая линия. Обсудим ее подробнее.
Мы уже указали, что три важнейшие составляющие протопланетного диска – газ, пыль и лед. В газовой составляющей доминируют водород и гелий. Это два самых обильных элемента во вселенной в целом, в Галактике, в межзвездной среде, в звездах… В типичном протопланетном диске в начале его эволюции водород и гелий могут составлять до 98–99 % массы. Неудивительно, что самые крупные планеты (как Юпитер в Солнечной системе) состоят в основном из них.
Пыль бывает очень разная, в том числе ледяная, но о ней позже. Начнем с более привычной. В ней могут доминировать углерод, кремний, железо (также будет наличествовать кислород, поскольку в состав пыли могут входить оксиды). Это тугоплавкие частицы, поэтому они выживают даже вблизи звезды (на расстояниях более нескольких звездных радиусов). Элементы, начиная с углерода и дальше, а особенно кремний и железо, составляют незначительную часть массы диска. Но поскольку они способны образовывать пылинки, а те в свою очередь могут слипаться друг с другом и таким образом наращивать массу, то именно они играют ключевую роль в начале процесса формирования планет во внутренних частях диска. Даже Юпитер начинался когда-то с пыли.