Книга Все формулы мира, страница 43. Автор книги Сергей Попов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Все формулы мира»

Cтраница 43

5А. Магнитные поля нейтронных звезд

Многие особенности нейтронных звезд связаны с тем, что они обладают очень сильными магнитными полями. Если на поверхности Земли поле не превышает 1 Гс, а в лабораторных экспериментах на мгновение удается получить поле в миллион раз больше, то на нейтронных звездах типичными считаются поля в миллион миллионов (1012) Гс! У некоторых магнитаров они еще в тысячу раз выше. Откуда эти поля взялись?

Нейтронные звезды образуются в результате коллапса ядер массивных звезд. Поскольку все звезды имеют магнитное поле, то оно должно достаться в наследство и нейтронной звезде. Более того, в ходе коллапса поле возрастет. Это достаточно легко понять.

Представьте себе звезду, пронизанную линиями магнитного поля. Плотность силовых линий – сколько их проходит через данную площадку – будет определять величину поля. Мысленно выделим ядро и опояшем его по экватору. Начинается коллапс – ядро сжимается. При этом число линий поля внутри кольца, охватывающего экватор, сохраняется (как говорят, «сохраняется магнитный поток»), а площадь поверхности ядра уменьшается, ведь она равна 4πR2, где R – радиус сферы. Значит, будет расти плотность силовых линий, т. е. будет возрастать поле: Все формулы мира Если до коллапса радиус ядра составлял 10 000 км и в итоге сформировалась нейтронная звезда с радиусом 10 км, то поле возрастет в миллион раз. Поле в ядре незадолго до коллапса может быть заметно выше, чем на поверхности звезды (где поля могут доходить до нескольких тысяч Гаусс), поскольку ядро постепенно поджималось (и уплотнялось) в течение эволюции звезды, так что значения порядка 1 млн Гс не должны быть редкими. В результате после коллапса мы легко получим нейтронную звезду с полем 1012 Гс.

Однако, чтобы создать магнитарное поле, которое, напомню, в тысячу раз выше, нужно что-то еще. Скорее всего, на стадии протонейтронной звезды, когда формирующийся компактный объект полностью конвективен (т. е. в нем идут бурные процессы перемешивания вещества), работает так называемый динамо-механизм, усиливающий магнитное поле. Источником энергии для формирующегося гигантского магнитного поля магнитара служит вращение протонейтронной звезды.

Давайте разберемся с энергией вращения и энергией магнитного поля. Представьте себе вращающийся шар. Каждый его маленький кусочек движется по окружности, перпендикулярной оси вращения. Пусть период вращения равен P, а радиус шара – R. Рассмотрим кусочек вещества массой Δm. Он вращается на расстоянии r < R от оси. Его скорость 2πr / P. Значит, он обладает кинетической энергией Δm (2πr / P)2 / 2. Чтобы получить полную энергию, связанную с вращением, нам надо просуммировать энергии всех кусочков вещества. Строго это получается интегрированием по объему шара. Ясно, что полная масса равна M, при этом все кусочки вращаются внутри шара, т. е. их скорости меньше 2πR / P. Значит, полная кинетическая энергия будет меньше, чем 4π2MR2 / 2P2. Насколько меньше, зависит от того, как меняется плотность вещества внутри шара. Для нейтронных звезд она изменяется слабо, поэтому энергия будет ненамного меньше максимальной.

Чтобы упростить запись формул, удобно ввести две величины: угловую частоту вращения и момент инерции. Угловая частота – это просто 2π / P. Обозначим ее буквой ω. Момент инерции (его обозначим буквой I) показывает, насколько инертно тело в смысле вращения, т. е. насколько трудно его раскрутить, а потом – затормозить (смысл примерно как у массы, характеризующей инертность в смысле поступательного движения). Момент инерции шара пропорционален произведению массы на квадрат радиуса (дополнительный безразмерный множитель зависит от распределения вещества в шаре). Энергия вращения запишется теперь в простом виде, напоминающем формулу для кинетической энергии: E = 2 / 2. В случае нейтронной звезды I ≈ MR2 что составляет примерно 1045 г·см2. Период вращения может составлять 0,001 секунды. Таким образом, получаем, что энергия вращения нейтронной звезды может достигать колоссальной величины >1052 эрг. Насколько это много? Это больше, чем Солнце излучает за всю свою жизнь! Так что, даже если малую часть этой энергии конвертировать в энергию магнитного поля, можно получить очень большую величину.

Как посчитать энергию магнитного поля? Не будем начинать с самых основ, а сразу скажем, что плотность магнитной энергии (т. е. магнитное давление) вычисляется по формуле: B2/8π. Значит, чтобы узнать примерную магнитную энергию, содержащуюся в нейтронной звезде, надо эту величину умножить на объем звезды (для простоты предполагаем, что поле заполняет весь компактный объект). Если поле на поверхности равно 1012 Гс, то полная энергия будет равна 2·1041 эрг. Совсем немного. Но если поле магнитарное, то энергия возрастает до 1047 эрг, столько Солнце излучает за 1 млн лет. Однако видно, что энергия вращения может быть больше, так что ее хватит для усиления поля.

С чем еще можно сравнить энергию магнитного поля? Например, с потенциальной (гравитационной) энергией нейтронной звезды. Она вычисляется как GM2/R. В типичном случае это составит 4·1053 эрг. Эта величина позволяет понять, каким может быть предельное магнитное поле. Из


Все формулы мира

получим, что поле никак не может быть больше 1018 Гс, иначе звезду «разорвет».

У нас нет примеров нейтронных звезд со столь сильными полями; скорее всего, в природе они не встречаются. Но уже типичные магнитарные поля могут искажать сферическую форму нейтронной звезды, ведь магнитное поле распределено в ней неравномерно. Нейтронные звезды могут быть немного вытянутыми вдоль магнитной оси, а могут быть сплюснутыми, что должно сказываться на том, как компактный объект вращается, поэтому есть надежда увидеть это в данных наблюдений. Кроме того, вращение такого несимметричного объекта (если магнитная ось не совпадает с осью вращения) должно приводить к испусканию гравитационных волн. Не исключено, что детекторы следующего поколения (например, так называемый Телескоп Эйнштейна) смогут зарегистрировать такие сигналы.

Итак, энергии вращения много. Часть можно успеть превратить в энергию магнитного поля, пока компактный объект молод и быстро вращается. А что дальше? Дальше магнитное поле может способствовать постепенному превращению энергии вращения в энергию излучения и улетающих с околосветовыми скоростями частиц. Так работают радиопульсары.

Типичный компактный объект этого типа рождается с вращательной энергией около 1051 эрг и магнитным полем 1012–1013 Гс. Если энергию вращения расходовать медленно, то ее хватит очень надолго. Но пульсары так не умеют. Чем быстрее они вращаются, тем быстрее тормозятся. А значит, тем больше излучают. Светимости молодых пульсаров могут легко превосходить миллион светимостей Солнца. Часть этой энергии уносится электромагнитными волнами, поэтому мы видим такие объекты как яркие источники во всех диапазонах спектра – от радио- до гамма-. Однако, как мы упоминали, основная доля уносится быстро двигающимися (релятивистскими) заряженными частицами. Благодаря этому релятивистскому ветру вокруг многих молодых пульсаров мы видим красивые туманности – плерионы. Самым известным примером здесь является Крабовидная туманность. Если в ней «выключить» радиопульсар, то прекратится «накачка» энергии, и туманность постепенно погаснет.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация