А. В ИСТОРИИ ФИЗИКИ ЕСТЬ НЕМАЛО ПРИМЕРОВ ТОГО, ЧТО ОПИСАНИЕ РЯДА ЯВЛЕНИЙ, КАЗАВШИХСЯ НЕ СВЯЗАННЫМИ ДРУГ С ДРУГОМ, УДАЛОСЬ ПРОВЕСТИ В РАМКАХ ОБЩЕГО ПОДХОДА. ФИЗИЧЕСКАЯ РЕАЛЬНОСТЬ ПРЕДСТАВЛЯЕТСЯ ЕДИНОЙ СТРУКТУРОЙ, ЭЛЕМЕНТЫ КОТОРОЙ ФУНКЦИОНИРУЮТ ПО ЕДИНЫМ ПРАВИЛАМ. ДАЛЕКО НЕ ВСЕ ВЗАИМОСВЯЗИ ВНУТРИ ЭТОЙ СТРУКТУРЫ НАМ ИЗВЕСТНЫ. ОДНАКО РАБОЧАЯ ГИПОТЕЗА СОСТОИТ В ВОЗМОЖНОСТИ ПОСТРОЕНИЯ ЕДИНОЙ ТЕОРИИ, ИЗ КОТОРОЙ ЗАКОНЫ ДЛЯ ВСЕХ КОНКРЕТНЫХ ЗАВИСИМОСТЕЙ МЕЖДУ ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ МОГУТ БЫТЬ ВЫВЕДЕНЫ С ПОМОЩЬЮ МАТЕМАТИЧЕСКИХ МЕТОДОВ.
Б. ИСПОЛЬЗОВАНИЕ МАТЕМАТИКИ ПОЗВОЛЯЕТ НА ОСНОВЕ УЖЕ ВЫЯВЛЕННЫХ ВЗАИМОСВЯЗЕЙ МЕЖДУ РАЗЛИЧНЫМИ ПРОЦЕССАМИ И ЯВЛЕНИЯМИ ОБНАРУЖИВАТЬ РАНЕЕ НЕИЗВЕСТНЫЕ СВОЙСТВА ФИЗИЧЕСКИХ ОБЪЕКТОВ, ПРЕДСКАЗЫВАТЬ ПОКА НЕ НАБЛЮДАВШИЕСЯ ЯВЛЕНИЯ, А ТАКЖЕ ФОРМУЛИРОВАТЬ НОВЫЕ ЗАКОНЫ ПРИРОДЫ.
Глава 2
Три доски
Представим себе три доски в университетской аудитории. Все они плотно заполнены формулами, но отличаются по смысловой нагрузке. Однако для многих неискушенных зрителей эти доски выглядят практически одинаково. Дело в том, что определить, в каких надписях есть смысл, в каких – нет, а на какой доске отражена некая единая идея, может быть затруднительно.
В данном случае первая доска заполнена абсолютной абракадаброй. На ней написаны несуществующие формулы – случайные сочетания математических символов и букв латинского и греческого алфавитов. На второй изображены известные уравнения, никоим образом не связанные друг с другом, и трудно представить себе контекст, в котором они стали бы элементами единого сюжета. Наконец, последняя доска содержит последовательный вывод некоего закона, т. е. каждое уравнение связано с предыдущим и в итоге мы получаем осмысленный и важный результат.
Давайте сравним чувства, возникшие при взгляде на эти три доски, с ощущениями, которые появились бы у нас в случае, если бы они были заполнены текстом на неизвестном языке. Снова одна доска была бы исписана случайным набором букв (разумеется, с сохранением разбиения на слова, синтаксисом и т. п.), вторая содержала бы реальные слова, но текст выглядел бы как бред, а третья представляла бы собой связный рассказ. Впечатления от доски с формулами и от доски с текстом, как правило, различны. Текст не впечатляет, мы слишком к нему привыкли. Только утверждение, что он имеет дело с древним языком исчезнувшей цивилизации (для любителей экзотики – с инопланетным языком) или секретным шифром, может заставить среднего человека вглядываться в каракули. Тем и притягателен манускрипт Войнича
[7]. Тем и красив кодекс Серафини
[8]. Мы думаем, что там скрыт какой-то особый смысл (даже зная, что у Серафини его нет, а скорее всего, нет и в манускрипте Войнича
[9]). Примерно так же на многих действует страница формул.
Они могут быть просто красивыми. У большинства людей сам вид сложных комбинаций непонятных символов вызывает душевный трепет и ощущение тайны. Магия… Но формула – не заклинание. Это выражение вполне определенной связи между конкретными параметрами. Есть формулы очень известные (такие как E = mc2), есть менее узнаваемые. Некоторые из них выражают наиболее фундаментальные законы, лежащие в основе современного понимания (а значит, и описания) мира.
Страница, исписанная формулами, вызывает бурю самых разных ассоциаций. Одновременно можно вспомнить и то, как трудно что-то давалось в школе или институте, и черные дыры, и атомную бомбу. Мы (многие, возможно, подсознательно) понимаем, что наш мир стоит на формулах, поскольку они лежат в основе техники, а куда всем нам без нее. Странно слышать про низкий авторитет науки, когда одними из самых действенных рекламных слоганов служат словосочетания: «новая формула» и «формула успеха»
[10].
Однако важно отметить, что физические формулы (включая самые известные и фундаментальные) существуют не сами по себе, а как часть большой структуры. Они взаимосвязаны друг с другом, и в этом смысл третьей доски. Путем преобразований (следующих определенным правилам) из одних формул можно получать другие. И это не является тавтологией: само обнаружение некоторых связей является научным открытием.
В XIX веке оказалось, что электричество и магнетизм – две стороны одной медали. Появилась теория электромагнитного поля. В начале XX столетия целью стало объединение электромагнетизма с гравитацией. Казалось, Теодор Калуца и Оскар Клейн нащупали перспективный подход
[11]. Альберт Эйнштейн тоже посвятил последние годы своей жизни поискам возможностей для такого объединения, однако из этого, к сожалению, ничего не вышло. Зато обнаруженное позже слабое ядерное взаимодействие
[12] удалось успешно объединить с электромагнитным в так называемое электрослабое взаимодействие. Это было сделано Стивеном Вайнбергом, Шелдоном Ли Глэшоу и Абдусом Саламом более полувека назад. А уже в 1980-е гг., когда в ЦЕРН были открыты и изучены W- и Z-бозоны, стало ясно, что получены надежные экспериментальные подтверждения верности предложенной ими модели.