Книга Все формулы мира, страница 29. Автор книги Сергей Попов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Все формулы мира»

Cтраница 29

Понимание отличается от просто «знания». Любой сдававший экзамен мог с этим столкнуться: вы все отбарабанили по билету, но преподаватель спрашивает: «А почему?» В итоге – максимум тройка. Знания были, понимания – нет. В вульгарном смысле каждый создает свою интерпретацию теории, о которой что-то узнает, создавая некоторые визуальные образы, помогающие представить, как там все происходит. Так что для большинства людей научное понимание неразрывно связано с визуализацией. Наличие представляемых образов также облегчает манипулирование с элементами теории, т. е. ее применение для описания (и предсказания) поведения объектов.

Представление о том, что означает «понимать», менялось с течением времени. Например, есть разница между тем, что вы что-то уложили у себя в голове (сюда попадают и «интуитивно понятные – для вас – идеи», и «у меня есть внутренняя уверенность, что…»), и тем, что вы можете связно и аргументированно изложить. Наконец, есть еще один уровень – применение знаний. Скажем, читатель хорошей научно- популярной литературы ощущает, что нечто стало понятным. Автор научно-популярной литературы может изложить некую модель, т. е. объяснить ее другим. Наконец, ученый способен применять и развивать это знание. Иными словами, речь идет не просто о знании и даже не о знании причин, а о некотором навыке, позволяющем применять знания, в том числе для получения новых знаний.

В ряде случаев переходы между этими категориями оказываются затруднительными. Сейчас очень распространена ситуация, когда, начитавшись научно-популярной литературы и пресс-релизов, энтузиасты идут «нести свет в массы», но получается это у них плохо, особенно если начать задавать им вопросы (какие-то знания есть, а понимания – нет, как у студента на экзамене в примере, приведенном выше). Хорошие популяризаторы, не работая профессионально в какой-то конкретной научной области, иногда пытаются предстать в ней в роли экспертов, но оказывается, что их знания недостаточно глубоки (они на самом деле не понимают важных деталей, не понимают причины), и оценка оказывается в лучшем случае поверхностной, а нередко и ошибочной.

На этих разных уровнях понимания часто задействованы разные средства. Стороннему интересующемуся человеку (скажем, мне – в области биологии) важно представить себе некоторую научную концепцию на уровне «пешехода» (пешехода XXI века, с высшим образованием и тысячей прочитанных книг за плечами, но все равно пешехода). Огромная удача – придумать новый яркий образ, хорошо поясняющий какую-то непростую научную концепцию или хотя бы какой-то ее существенный аспект. Именно к таким образам и должен стремиться популяризатор. Но все это не дает возможности работать в соответствующей области. Это верно не только для популярного уровня. Современная наука стала достаточно сложной и разветвленной, так что и университетские преподаватели оказываются в положении, когда в своих общих лекционных курсах, касающихся очень широкого круга вопросов, они оперируют понятиями, которыми не владеют на уровне профессионалов в соответствующей узкой области.

На этапе применения сложных понятий часто визуальные образы уже оказываются не нужны. На этом уровне люди думают по-другому, поэтому вполне типична ситуация, когда ведущий эксперт в какой-то сложной научной сфере не может «в двух словах, буквально на пальцах» объяснить, казалось бы, базовые понятия из его области. Например, «как представить себе вечную инфляцию». Поэтому я категорически не согласен, что настоящий специалист в любой области должен уметь объяснить, чем он занимается, пятилетнему ребенку. Не всегда это можно объяснить на должном уровне и 55-летнему доктору других наук.

По мере развития науки таких ситуаций может быть все больше, в том числе и в областях, касающихся самых первооснов. Это связано с тем, что, углубляясь в строение мира, мы оказываемся в областях, сильно отличающихся от тех, в которых мы эволюционировали. Наш разум оказывается не приспособлен для непосредственного восприятия (представления) того, что там происходит. Нам приходится учиться понимать по-новому, в частности обзавестись новой интуицией, так как старая не годится. Уже с квантовой механикой, СТО и ОТО возникают проблемы. Но нас может ждать еще более радикальный переход, если на каком-то микроуровне не просто изменяются, а исчезают понятия пространства и времени [90]. И здесь, видимо, под пониманием мы будем понимать (такой вот каламбур) в первую очередь способность математически анализировать объекты и процессы.

А что, если наши теоретические модели, которые, допустим, можно представить в виде компактных понятных формул, не дают непосредственных вычислимых количественных предсказаний, которые можно было бы сравнить с наблюдениями? Отсутствие количественных выводов теории может быть связано с тем, что конечный компьютер за конечное количество итераций не может совершить вычисление с неопределенностью (ошибкой), меньше заданной. Иначе говоря, не существует алгоритма для проведения точных расчетов. В ходе такого анализа мы не можем быть уверены, что члены, которые сыграют роль на последующих итерациях, не уведут результат сильно в сторону [91]. Как мы в данном случае будем судить об истинности теорий? Что скажет Поппер??? Такое, как показывают исследования, может произойти в некоторых моделях квантовой гравитации, и обсуждение такой странной перспективы уже идет. Роберт Герох (Roberg Geroch) и Джеймс Хартл (James Hartle) полагают [92], что это не должно нас останавливать. Оптимистический взгляд на такую возможность говорит, что прогресс все-таки реален, пусть и путем больших усилий и временных затрат. Пессимистическое отношение к таким построениям состоит в том, что на этих теориях нельзя основать научное понимание в современном смысле, так как ни путем расчетов, ни путем качественных рассуждений мы не сможем давать надежные и достаточно точные предсказания о протекании процессов и поведении объектов. Может быть, в самом деле изменится смысл «научного понимания»…

Пока же именно формулы в физике дают нам и понимание, и предсказание, и возможность создавать технические устройства. А кроме того, математический аппарат позволяет нам двигаться дальше, углубляя наши знания. Кто-то полагает, что «книга природы написана на языке математики», кто-то считает, что мы лишь придумали очень удобный язык для описания мира (и продолжаем его разрабатывать). Но, как бы то ни было, сейчас без формул невозможно представить себе эффективное познание мира. А что будет в будущем?

Вход
Поиск по сайту
Ищем:
Календарь
Навигация