Тем не менее не только в самом начале, но и в процессе своего развития математика постоянно получала запросы от различных областей знания, изучающих природу или социальные и лингвистические структуры. Речь шла не только о вопросах типа «Нет ли у вас подходящего инструмента для такой-то задачи?», но и о разработке новых методов. Иными словами, если придерживаться точки зрения, что математика – это создаваемая человеком абстрактная структура, то важно, что и в ее фундаменте лежат наблюдаемые закономерности, и в ходе строительства некоторые этажи проектировались по заказу.
Результатом стало «строение», поразительным образом соответствующее реальному миру
[83]. Это как дом, хорошо вписанный в сложный пейзаж. Его проект начали создавать, исходя из ключевых требований (защищать от дождя и ветра) и базовых особенностей местности (солнце – на юге, холодный ветер с моря – на севере), затем стали учитывать и «внутренние причины», не связанные с «пейзажем» (от типичного набора помещений – столько-то спален, столько-то ванных комнат, столько-то гостевых, кухня, гостиная и т. д. – до чисто «механических» особенностей существующих стройматериалов, их наличия в окрестностях, а также таких «наивных» параметров, как рост людей и т. п.
[84]), но по ходу строительства в проект постоянно вносились коррективы уже в связи с вновь выявившимися внешними причинами (появились новые члены семьи, завели козу). В итоге мы поражаемся, насколько уместно постройка смотрится в данном месте и как в ней всем комфортно.
Однако представьте свое удивление, если при строительстве дома, буря скважину, чтобы провести воду, вы обнаруживаете источник с удивительно целебной минеральной водой, при рытье котлована находите древний клад и т. д. С решением уравнений такое происходит. Одним из самых ярких примеров получения неожиданного результата служит предсказание позитрона Полем Дираком в 1928–1931 гг.
Целью Дирака было записать уравнение для описания свойств электрона с учетом и квантовой механики, и специальной теории относительности. Решение уравнения давало не только состояния с положительной энергией (которые и соответствовали электрону), но и с отрицательной. Анализ этой «аномалии» привел к выводу о существовании антиэлектрона – частицы с положительным зарядом (равным по модулю заряду электрона) и такой же, как у электрона, массой. При взаимодействии друг с другом электрон и антиэлектрон должны исчезать (аннигилировать), а их энергия – переходить в излучение. Это стало рождением идеи антивещества. Позитроны были обнаружены экспериментально в 1932 г. при изучении космических лучей. Затем антипартнеры были открыты и для других частиц.
В настоящее время антивещество изучают и на ускорителях, и в космической среде. В реакциях столкновений тяжелых ионов на коллайдерах удалось даже получить ядра антигелия. Кроме того, в специальных установках были созданы атомы антиводорода: вокруг антипротона вращается позитрон. В космических лучах регистрируются позитроны и антипротоны (ядра антигелия и более тяжелых элементов пока не обнаружены, но их активно ищут). Антипротоны и позитроны возникают в столкновениях протонов высоких энергий с ядрами атомов в межзвездной среде. В дополнение к этому важным источником позитронов могут быть радиопульсары. Кроме того, античастицы могут возникать из-за аннигиляции частиц темного вещества и испарения черных дыр, но соответствующие избытки пока не выявлены.
Симметрия, существующая в уравнениях, рассказавших нам об антивеществе, наводила на естественную мысль о том, что во вселенной должно быть одинаковое количество вещества и антивещества. Однако они не могут быть перемешаны, так как в этом случае будут идти интенсивные процессы аннигиляции, сопровождаемые наблюдаемыми последствиями. Вещество и антивещество исчезало бы, порождая мощные потоки жесткого излучения. Современные данные наблюдений говорят, что доля антивещества в межзвездной среде всего лишь 10–15–10–16. Иначе говоря, на один антипротон приводится миллион миллиардов протонов. Если бы где-нибудь в Галактике поместили звезду из антивещества, то, превратившись в красный гигант или взорвавшись как сверхновая, она породила бы мощное аннигиляционное гамма-излучение.
Значит, единственная возможность – это большие области, в которых доминирует вещество, и такие же большие области из антивещества. Андрей Вознесенский писал: «Да здравствуют Антимиры! // Фантасты – посреди муры». Можно представить себе галактики и их скопления из антивещества, отделенные от их «антиподов» огромными практически пустыми пространствами. Но и тут не все просто. Ведь когда-то не существовало галактик и звезд, а плотность вещества была гораздо выше. Космологические данные говорят против того, что в видимой части вселенной может существовать симметрия вещества и антивещества. Интересно, что ключевой результат был получен Кохеном, Де Рухулой и Глэшоу в 1998 г. Но еще в 1961 г. Вознесенский заканчивал свое стихотворение «Антимиры» так:
…Знакомый лектор мне вчера
сказал: «Антимиры? Мура!»
Я сплю, ворочаюсь спросонок,
наверно, прав научный хмырь…
По всей видимости, в ранней вселенной существовал небольшой перевес вещества над антивеществом. Поскольку в результате аннигиляции образовывались фотоны, мы можем сказать, насколько невелик был перевес. Сейчас на одну частицу вещества приходится более миллиарда фотонов. Значит, в раннюю эпоху вещества было примерно на одну миллиардную больше – по числу частиц, – чем антивещества.
Как сформировался этот небольшой перевес, доподлинно неизвестно. Данный вопрос называют проблемой бариогенезиса
[85]. В 1960-е гг. Андрей Сахаров сформулировал три ключевых условия, необходимых для бариогенезиса. Во-первых, нарушение барионного числа. В обычных условиях число барионов не меняется. Однако известны процессы, в которых сохраняется лишь некоторая комбинация числа барионов и лептонов
[86]. Вторым условием является нарушение так называемой CP-инвариантности
[87]. В том, что это условие может выполняться, также нет сомнений. Наконец, третье условие – отсутствие теплового равновесия. Это может обеспечиваться, например, быстрым расширением вселенной в первые доли секунды – сразу после стадии инфляции.