Книга Все формулы мира, страница 24. Автор книги Сергей Попов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Все формулы мира»

Cтраница 24

Из всей троицы вариантов лишь второй соответствует вселенным с разными физическими законами [75]. На настоящий момент наиболее весомую аргументацию для него предоставляет теория струн. Особенностью современных версий этого сценария является великое множество вариантов так называемого ложного вакуума. Именно вакуум конкретной реализации теории определяет базовые свойства мира. Математика, на которой базируется теория струн (многообразия Калаби – Яу), предсказывает гигантское количество возможностей, доходящее до 10500. Это невообразимо большое число, если сравнивать хоть с чем-то соразмерным нашему миру. Скажем, если объем видимой части вселенной выразить в планковских единицах, то мы получим «всего лишь» число порядка 10186, а количество частиц обычного вещества (протонов, нейтронов, электронов) в ней составляет около 1081. Таким образом, теория струн (являющаяся пока лишь одной из нескольких конкурирующих моделей) предсказывает гигантское количество возможных вселенных с разными свойствами.

Какие-то из множества мультимиров струнной космологии будут отличаться от нашего не сильно, какие-то – радикально. В каких-то возможна жизнь земного типа, в каких-то она может существовать, лишь будучи принципиально отличной от известной нам, а какие-то вовсе необитаемы. В моделях вечной инфляции все эти варианты могут реализоваться. И, если окажется, что теория струн является правильной моделью в нашей вселенной, а, кроме того, теория космологической инфляции получит окончательные наблюдательные подтверждения, у нас будут сильные аргументы в пользу существования фантастически большого числа других вселенных, которые мы сможем изучать, скорее всего, лишь теоретически, т. е. лишь решая уравнения и строя компьютерные модели.

Наши эксперименты и астрономические наблюдения могут позволить проверить предсказания теории струн и инфляционной модели в пределах метагалактики. Допустим, что и та и другая гипотезы пройдут эту проверку. Таким образом, мы установим, что они верно описывают свойства нашего мира. Из правильности этих двух теорий автоматически должно следовать существование определенного типа мультивселенных. Математика будет говорить нам об этом. Однако прямые эксперименты или наблюдения других миров могут оказаться невозможными. Значит, мы окажемся в довольно интересном положении: у нас появится уверенность, основанная на теоретических выводах, но не будет возможности провести решающие тесты. Зато деятельность по построению теоретических описаний других вселенных станет более осмысленной и оправданной.

Итак, работа физика-теоретика нередко связана с исследованием гипотетических возможностей, согласующихся в первую очередь с математическими правилами. Чаще всего обсуждаются вероятные свойства нашего мира. Хотя в некоторых случаях речь идет о том, как в принципе могут быть устроены разные вселенные. Возникает образ нашей Метагалактики, являющейся крохотной частью гигантской (не исключено, что и бесконечной) структуры возможных миров. Теоретические физические модели иногда выглядят как «одежда для несуществующих существ» в кодексе Серафини. Это одежда, сделанная если не из той же ткани, то по крайней мере из тех же нитей, что и наша. А можем ли мы представить себе другие нити?

А. МОЖНО ВЫДЕЛИТЬ ТРИ ПОДХОДА К ОЦЕНКЕ РОЛИ МАТЕМАТИКИ В ОПИСАНИИ И ПОЗНАНИИ МИРА: ОТКРЫВАЕМАЯ НАМИ МАТЕМАТИКА И ЕСТЬ ИСТИННАЯ СТРУКТУРА МИРА; МАТЕМАТИКА ЯВЛЯЕТСЯ НАИБОЛЕЕ АДЕКВАТНЫМ ЯЗЫКОМ ДЛЯ ОПИСАНИЯ РЕАЛЬНОГО МИРА; МАТЕМАТИКА НЕ ОТРАЖАЕТ ИСТИННУЮ СТРУКТУРУ МИРА, А ЧРЕЗМЕРНОЕ УВЛЕЧЕНИЕ МАТЕМАТИЗАЦИЕЙ ВСЕХ НАУК СПОСОБНО ПОВЕСТИ НАС ПО ЛОЖНОМУ ПУТИ.

Б. ЕСЛИ МАТЕМАТИКА ЛЕЖИТ В ОСНОВЕ СТРУКТУРЫ НАШЕГО МИРА, ТО МОЖНО РАССУЖДАТЬ О МУЛЬТИВСЕЛЕННЫХ, ОПИСЫВАЮЩИХСЯ ДРУГОЙ МАТЕМАТИКОЙ.


Все формулы мира
Глава 12
Другая математика?

Если акции все время растут, то к радости могут начать примешиваться тревога и сомнения: не пора ли подумать о том, чтобы все их сбросить? Ведь курс не может расти вечно? Или может? На рынках вряд ли вероятен вечный рост, а вот с научным прогрессом ситуация не столь очевидна. С одной стороны, не будет большим преувеличением сказать, что вот уже почти полтысячелетия продолжается период практически экспоненциального роста естественно-научного знания, сопровождающийся столь же быстрым развитием техники. С другой – постоянно звучат упреки в односторонности, однобокости этого процесса. В частности, потрясающие успехи, связанные с применением математики в естественных науках, у некоторых могут вызывать некий дискомфорт.

Во-первых, критику может вызывать чрезмерное доверие к математике при ее применении как в естественных и технических науках, так и в социально-гуманитарных и экономических. У многих возникает желание отталкиваться в исследованиях не от реальности, а от ее математического описания. Иными словами, ход мысли начинается не с загадки о свойствах реальных объектов, не с изучения их свойств и взаимосвязей между ними, а с анализа уравнений и их модификации: «Давайте добавим еще один член в лагранжиан». Многократно такой подход демонстрировал свою эффективность. Но еще чаще, о чем знают только специалисты, бывает наоборот.

Вполне типична такая ситуация: исследователь освоил определенную методику и начинает плодить ряд публикаций, основанных на достаточно механическом переборе каких-нибудь экзотических вариантов решений, которые, с одной стороны, не имеют отношения к реальности, а с другой – не способствуют сколь-нибудь значимому прогрессу в области математики или математической физики. Научные журналы заполнены огромным количеством таких статей, что многим, естественно, не нравится. Хотелось бы как-то уменьшить этот поток, однако ситуация не так проста. Никто не хочет выплеснуть с водой ребенка. Кроме того, нелишне заметить, что это очень дешевая наука, ведь никакие приборы и установки не нужны, только «бумага, карандаши и ластики» (хотя в последние годы к этому необходимо добавить и компьютеры, иногда с приставкой «супер-»). К тому же авторы таких статей часто являются вузовскими преподавателями, и подобный вид научной активности можно рассматривать и как «умственную гимнастику», позволяющую им поддерживать интеллектуальную форму, определенный исследовательский тонус.

Есть, однако, и более фундаментальная критика. Если первое сомнение, описанное выше, свойственно в основном самим участникам процесса, то второе звучит извне. В какой-то мере эта критика всего научно-технического направления развития в целом. Она состоит в сомнении в состоятельности самого подхода – математического описания мира. Процитируем еще раз Николая Гумилева: «А для низкой жизни были числа, // Как домашний, подъяремный скот». Не отрицая достигнутых успехов как таковых, критики считают, что это глобально неверный путь. «Истинная» структура мира не имеет отношения к математике, а потому, затрачивая основные усилия – и интеллектуальные, и финансовые – на такой способ познания мира (мы же понимаем, что, перефразируя Хайдеггера, «Большой адронный коллайдер заработал еще в теореме Пифагора»), мы уходим от возможности познания его сути.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация