Книга Все формулы мира, страница 15. Автор книги Сергей Попов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Все формулы мира»

Cтраница 15

Всем известно, что важный рубеж смогли преодолеть античные греки. К пифагорейцам можно возвести начала алгебры, поскольку именно они начали строить систему операций с (целыми) числами, основанную на некоторых постулатах [45], а к платоникам – геометрию. Существенным стало именно создание логически связанной структуры, базирующейся на наборе аксиом. В таком случае мы можем не только решать текущие задачи, но и развивать наш метод, используя его внутренние ресурсы. С этой точки зрения настоящим памятником культуры является евклидова геометрия. Это образец понятного и строгого вывода, основанного на разумных постулатах, к тому же более или менее соответствующих нашему опыту.

На фундаменте, заложенном древними греками (которые сами учились чему-то у египтян, а чему-то – у других народов), выросло современное здание математики, парадоксальное и восхитительное. К нашему удивлению, математика предлагает неожиданные готовые решения проблем, в том числе и самых насущных: как правильно составить расписание, как лучше организовать транспортную сеть, как быстрее найти информацию в большой базе данных и т. д. Ну или совершенно неактуальных в быту: как описать движение частиц в многомерном искривленном пространстве, как из данных о колебаниях лучевой скорости звезды в системе девяти планет определить параметры каждой из них и т. д. и т. п. Более того, эффективность математических методов настолько велика, что позволяет делать естественно-научные открытия «на кончике пера», т. е. просто путем анализа решений уравнений.

«Непостижимая эффективность математики» сродни чуду человеческого глаза (хотя глаза стрекозы или лобстера не менее, а может быть, даже и более удивительны). И то и другое заставляет некоторых людей объяснять его сверхъестественными причинами.

«Необъяснимая» сложность глаза служит аргументом для теории разумного замысла. Ведь никто не поверит, что сам собой (в результате случайных мутаций) неожиданно появился столь хитроумный орган, выполняющий так много функций. Но он таким способом и не появлялся! Проблема долгое время состояла в том, что органы зрения древних животных очень трудно изучать. Это же не костные останки, достаточно хорошо сохраняющиеся в грунте, благодаря чему мы можем десятки миллионов лет спустя восстановить полные скелеты динозавров (у которых, к слову, уже было вполне продвинутое зрение) и посмотреть, как они связаны с ныне живущими видами. Тем не менее развитие научных методов привело к тому, что мы все-таки можем восстановить основные вехи в становлении структуры светочувствительных органов, приведшем к появлению зрения современного человека.

Эффективность математики также иногда служит аргументом в пользу наличия Творца. Если для Ньютона это был «Великий часовщик», то теперь для кое-кого – творцы Матрицы. Ведь это поразительно, как просто и гармонично устроен мир. Вот закон Всемирного тяготения – а вот из него выводятся эллиптические орбиты планет и все прочие законы Кеплера. При этом сам закон напрямую связан с трехмерностью нашего пространства. Более того, например, математика – явно искусственно созданная и развиваемая человеком структура. Однако она позволяет в некоторых случаях не только описывать, но и предсказывать явления в реальном мире! Книга природы написана на языке математики. Кем? Неважно, кем конкретно, но ведь не сама же себя написала? [46]

С математикой произошло нечто, похожее на появление глаза, – эволюция. Именно это объясняет ее сложность и поразительную адаптированность к миру (вероятно, в мирах, не описываемых в рамках достаточно простых законов, жизнь попросту невозможна; об этом говорит и антропный принцип, см. главу 10). Причем если в случае глаза (и других органов) людям в наследство достались разные неудобные странности (перевернутая сетчатка, слепое пятно), то развитие науки часто позволяло по ходу изучения этого органа вносить коррективы. Тем не менее какие-то рудименты остались. У нас на руках 10 пальцев, поэтому базовая система счисления десятеричная (хотя для счета времени и угловых координат мы используем шестидесятеричную, а в компьютерах – двоичную). У нас есть устоявшиеся традиции расположения осей в трехмерном пространстве (и иногда, когда вдруг удобнее использовать другой вариант, например при описании движения объектов в нашей Галактике, возникает путаница). Читатель может попробовать привести свои примеры.

Поразительная эффективность математики во многом объясняется тем, что она возникла в ответ на практические нужды и развивалась, не отрываясь полностью от реальности и постоянно соотносясь с естественными науками – астрономией, физикой и др., а теперь еще и с кибернетикой, IT-технологиями, социологией [47]. К тому же не надо забывать, что огромное количество математических структур не нашли (и, скорее всего, никогда не найдут) применения в естественных науках. Так что между математикой и физическим миром, как нам кажется, нет соответствия «один в один».

Те же методы математики, что нашли себе применение, часто активно используются при численном моделировании сложных процессов. И вот тут можно находить многочисленные примеры эволюции с сохранением рудиментов. Любой, кто достаточно долгое время писал какой-нибудь пакет программ, развивая его и создавая новые версии на протяжении ряда лет, сталкивался с этим.

Поскольку в астрофизике прямые эксперименты, как правило, невозможны, в этой науке активно используются численные (как говорится, кто может – делает, кто не может – симулирует). Можно моделировать отдельные сложные процессы (слияния нейтронных звезд и черных дыр, формирование планетных систем, столкновение галактик), а можно рассчитывать свойства и эволюцию большой совокупности объектов (звезд, планет, пульсаров). Последнее называется популяционным синтезом.

Нередко одна группа авторов может заниматься моделированием какого-то широкого класса объектов на протяжении десятилетий. За это время не только идет развитие науки, но также появляются новые вычислительные средства, компьютерные языки, алгоритмы. Иногда возникает возможность написать новую версию программы с нуля. Тогда можно перейти на более продвинутый язык (скажем С++ или Python вместо Фортрана), использовать современные вычислительные схемы, ну и, разумеется, добавить новую физику, ради чего все и затевалось. Как правило, это происходит, если в команду приходит новый (и, что важно, молодой) человек. А между такими прогрессивными событиями дорабатывается старая версия путем вписывания новых строк кода, добавления подпрограмм, модулей и т. п. И вот здесь происходит эволюция, весьма похожая на биологическую. Если мы вначале ходили на четырех конечностях, а потом перешли на прямохождение, будут проблемы с позвоночником. Если окажется, что нужен большой мозг, будут проблемы с родами.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация