Книга Все формулы мира, страница 12. Автор книги Сергей Попов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Все формулы мира»

Cтраница 12

Описание поведения света и частиц существенно усложнилось за сотни лет, разделяющих времена Рене Декарта, впервые объяснившего радугу, и Эрвина Шрёдингера, заложившего основы волновой квантовой механики. Готов поспорить, что прогресс в этой области может заметить даже неспециалист, просто на глазок сравнив публикации XVII и XX веков.

А. ПО МЕРЕ РАЗВИТИЯ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ УРАВНЕНИЯ СТАНОВЯТСЯ СЛОЖНЕЕ: В ФИЗИКЕ ПОЯВЛЯЮТСЯ НОВЫЕ ПРОЦЕССЫ И ЯВЛЕНИЯ (ВКЛЮЧАЯ ГИПОТЕТИЧЕСКИЕ), НУЖДАЮЩИЕСЯ В ОПИСАНИИ, А В МАТЕМАТИКЕ ВОЗНИКАЮТ НОВЫЕ МЕТОДЫ И КОНСТРУКЦИИ.

Б. ФИЗИЧЕСКИЕ МОДЕЛИ ЯВЛЕНИЙ СТАНОВЯТСЯ СО ВРЕМЕНЕМ ВСЕ СЛОЖНЕЕ, ПОСКОЛЬКУ ОПИСАНИЕ СТАНОВИТСЯ БОЛЕЕ ДЕТАЛЬНЫМ И КОМПЛЕКСНЫМ: В НЕГО ВКЛЮЧАЮТСЯ ВСЕ НОВЫЕ ЭФФЕКТЫ И ВСЕ БОЛЕЕ МЕЛКИЕ ДЕТАЛИ.


Все формулы мира
Глава 6
Возрастание сложности

Одной из самых ярких иллюстраций усложнения науки является исчезновение ученых-универсалов. Теперь трудно не то что работать в нескольких разных областях, но даже внутри своей науки (физики, биологии, химии, математики, да даже астрофизики) практически невозможно разбираться на профессиональном уровне в очень широком круге проблем. Как у животных по мере совершенствования в ходе эволюции нередко сужаются ареалы обитания, так и ученые занимают свои небольшие экологические ниши. И это очевидная общая тенденция. Раньше один механик мог разобраться в любой проблеме в гоночной машине, теперь же специалист по коробке передач вряд ли сможет исправить сбой в бортовом компьютере болида «Формулы-1». Раньше один врач лечил от всех болезней, а теперь для каждого органа нужен свой доктор (а то и не один).

Сравнив научные приборы начала и конца XX века, любой сделает вывод о том, что прогресс есть, причем довольно стремительный. Тут даже не надо быть специалистом. Посмотрите на первый ускоритель, построенный в начале 1930-х гг. и помещавшийся на столе, а теперь сравните его с… – читатель ждет уже продолжения «с Большим адронным коллайдером». Ну так с ним и сравните! Посмотрите на первые радиотелескопы (тоже, кстати, 1930-х гг.) и на систему ALMA [35], на телескоп Галилея и JWST [36]. А способен ли неспециалист заметить прогресс, глядя только на уравнения?

Можно выделить по крайней мере три причины, почему более поздние научные публикации с формулами будут отличаться от ранних в сторону глазом заметного усложнения, а также одну причину для обратного эффекта. Во-первых, появляются новые сферы исследований. Во-вторых, в уже существовавших областях начинает использоваться новый матаппарат. В-третьих, даже в рамках одних и тех же областей и одних и тех же подходов с точки зрения математики модели становятся детальнее, т. е. в уравнениях появляются дополнительные члены. Итак, возникают уравнения про что-то новое, новые типы уравнений, новые члены в уравнениях.

Если мы возьмем университетские учебники по физике за несколько сотен лет, то, конечно же, заметим существенную разницу из-за того, что постоянно появляются новые разделы, новые темы. Соответственно, растет объем учебников и/или увеличивается их количество. В учебниках XIX века мы не увидим уравнений общей теории относительности и квантовой механики. В учебниках XVIII века нет уравнений электродинамики. В XVII веке и более ранних веках будет, в общем-то, только механика в разных ее проявлениях.

Чтобы заметить эту разницу, не надо разбираться в том, что означают уравнения. Надо просто быть внимательным. Новые области появляются в первую очередь благодаря развитию экспериментальной физики. Теоретикам приходится описывать новые грани реальности, а для этого используют другие математические выражения с другой структурой, потому что старые не подходят. И выглядят они иначе.

Можно провести такой эксперимент. Пригласить давнего выпускника физического факультета, который не имел никакой связи с наукой с момента окончания университета, и начать показывать ему на карточках разные уравнения. Причем все их писать с ошибками (плюс поменять на минус, оператор дивергенции заменить на лапласиан, синус – на косинус, вторую степень – на третью и т. д.). Наверняка тем не менее человек будет угадывать: «Вот это – уравнения Максвелла, это – уравнение Шрёдингера» и т. д., потому что он запомнил их общий вид. Соответственно, появление новых «формульных образов» можно заметить, листая учебники физики разных лет.

Перейдем ко второму пункту программы. Как мы уже неоднократно отмечали, часто оказывается, что у математиков есть большой набор методов, пока невостребованных физикой. Последняя по мере своего развития обращается к этим методам. Условно говоря, экспериментаторы что-то открыли, теоретик пытается это описать, но у него не хватает «слов», и он идет к математикам. В результате в физических статьях появляются гиперболические синусы и косинусы, матрицы, тензоры, какие-то элементы топологии, что-то из теории групп и т. д.

Особая статья здесь – новые статистические методы и новые методы работы с данными. Оказавшийся на самом переднем крае науки исследователь всегда сталкивается с тем, что сигнал лишь чуть-чуть сильнее шума. Причем сам шум может иметь очень необычные свойства. Данных всегда не хватает: экспериментальных точек мало. Чтобы получить необходимую информацию для надежных выводов, надо не просто провести эксперимент или наблюдения, но и обеспечить тщательную обработку данных, выжав из них все, что только можно (и при этом не выжать больше – не получить то, чего в данных нет, а хочется). Для этого ученые постоянно создают все более продвинутые методы, и уравнения, с ними связанные, выглядят по-новому, что тоже можно заметить, просматривая публикации.

В современной науке яркие примеры, в которых именно сложные математические методы помогают что-то рассмотреть, связаны с поиском гравитационных волн и получением прямых изображений экзопланет. Установки LIGO– первый пример настоящих больших данных (big data) в астрофизике. Принимаемый сигнал очень слабый, наблюдениям мешают самые разные шумы – сейсмические, тепловые, квантовые, поэтому с очень высокой частотой (ведь принимается сигнал с частотой до пары килогерц) снимаются десятки тысяч параметров разных узлов установки. Все эти данные надо учесть при анализе. Не исключено, что важным вкладом гравитационно-волновых обсерваторий в народное хозяйство станет именно разработка алгоритмов работы с большим объемом зашумленных данных.

В чем-то аналогична ситуация с наблюдениями экзопланет [37]. Сейчас более чем для десятка из них получены прямые изображения. Это не просто «щелк – и фотография». Планета – очень слабый источник, расположенный рядом с яркой звездой. Угловое расстояние между планетой и звездой составляет в лучшем случае сотые доли угловой секунды [38]. Обычно удается рассмотреть лишь молодые гигантские планеты, расположенные от своих звезд заметно дальше, чем Юпитер от Солнца. Эти планеты, продолжая сжиматься, светятся не за счет отраженного излучения звезды, а за счет собственного излучения, приходящегося в основном на инфракрасный диапазон спектра, в котором сама звезда уже не такая яркая, поскольку максимум в спектре ее излучения приходится на видимый диапазон. Сжатие позволяет превратить часть гравитационной потенциальной энергии в тепло. Поэтому внешние слои таких планет достаточно горячи, их температура (сотни, иногда даже больше тысячи Кельвин) намного выше, чем, например, у Юпитера, которому более 4,5 млрд лет. Пока система молода, звезда может быть окружена так называемым остаточным, или осколочным, (debris) пылевым диском, который, так же как и планеты, излучает в ИК-диапазоне спектра, давая тем самым лишнюю «засветку». Таким образом, даже в случае гигантских молодых планет, расположенных в десятках астрономических единиц от своих звезд, выделение их света является крайне сложной задачей, для решения которой приходится применять математически сложные методы обработки цифровых изображений, убирая свет звезды и шумы.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация