— Kandel, E. R., Schartz, J., Jessel, T., Siegelbaum, S. A., Hudspeth, A. J. (2013). Principles of neural science, 5th ed. New York: McGraw-Hill Medical.
— Karlsson, M. P., Frank, L. M. (2009). Awake replay of remote experiences in the hippocampus. Nature Neuroscience, 12, 913–918.
— Karmarkar, U. R., Najarian, M. T., Buonomano, D. V. (2002). Mechanisms and significance of spike-timing dependent plasticity. Biological Cybernetics, 87, 373–382.
— Keele, S. W., Pokorny, R. A., Corcos, D. M., Ivry, R. (1985). Do perception and motor production share common timing mechanisms: a correctional analysis. Acta Psychologica (Amst.), 60, 173–191.
— Kiesel, A., Vierck, E. (2009). SNARC-like congruency based on number magnitude and response duration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 275–279.
— Kilgard, M. P., Merzenich, M. M. (1995). Anticipated stimuli across skin. Nature, 373, 663.
— Kilgard, M. P., Merzenich, M. M. (2002). Order-sensitive plasticity in adult primary auditory cortex. Proceedings of the National Academy of Science USA, 99, 3205–3209.
— Killingsworth, M. A., Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330, 932.
— Kim, J., Ghim, J.-W., Lee, J. H., Jung, M. W. (2013). Neural correlates of interval timing in rodent prefrontal cortex. Journal of Neuroscience, 33, 13834–13847.
— Kivimäki, M., Batty, G. D., Hublin, C. (2011). Shift work as a risk factor for future type 2 diabetes: evidence, mechanisms, implications, and future research directions. PLoS Med, 8, e1001138.
— Klampf l, S., David, S. V., Yin, P., Shamma, S. A., Maass, W. (2012). A quantitative analysis of information about past and present stimuli encoded by spikes of A1 neurons. Journal of Neurophysiology, 108, 1366–1380.
— Knutsson, A. (2003). Health disorders of shift workers. Occupational Medicine, 53, 103–108.
— Koch, C. (2004). The quest for consciousness: A neurobiological approach. Englewood, CO: Robers & Company.
— Konopka, R. J., Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Science USA, 68, 2112–2116.
— Kording, K. (2007). Decision theory: What “should” the nervous system do? Science, 318, 606–610.
— Kostarakos, K., Hedwig, B. (2012). Calling song recognition in female crickets: Temporal tuning of identified brain neurons matches behavior. Journal of Neuroscience, 32, 9601–9612.
— Kraus, B. J., Robinson, R. J., White, J. A., Eichenbaum, H., Hasselmo, M. E. (2013). Hippocampal “time cells”: Time versus path integration. Neuron, 78, 1090–1101.
— Kwan, D., Craver, C. F., Green, L., Myerson, J., Boyer P., Rosenbaum, R. S. (2012). Future decision-making without episodic mental time travel. Hippocampus, 22, 1215–1219.
— Kyriacou, C. P., Hall, J. C. (1980). Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male’s courtship song. Proceedings of the National Academy of Sciences of the USA, 77, 6729–6733.
— Laje, R., Buonomano, D. V. (2013). Robust timing and motor patterns by taming chaos in recurrent neural networks. Nature Neuroscience 16, 925–933.
— Lakoff, G., Johnson, M. (1980/2003). Metaphors we live by. Chicago: University of Chicago Press. В русском переводе: Лакофф Дж., Джонсон М. Метафоры, которыми мы живем. — УРСС, 2004.
— Lamy, D., Salti, M., Bar-Haim, Y. (2009). Neural correlates of subjective awareness and unconscious processing: an ERP study. Journal of Cognitive Neuroscience, 21, 1435–1446.
— Landes, D. S. (1983). Revolution in time: Clocks and the making of the modern world. New York: Barnes & Noble.
— Lashley, K. S., ed. (1951). The problem of serial order in behavior. New York: Wiley.
— Lasky, R. (2012). Time and the twin paradox. Scientific American, 21, 30–33.
— Lau, H. C., Rogers, R. D., Passingham R. E. (2007). Manipulating the experienced onset of intention after action execution. Journal of Cognitive Neuroscience, 19, 81–90.
— Lavie, P. (2001). Sleep-wake as a biological rhythm. Annual Review of Psychology, 52, 277–303.
— Lebedev, M. A., O’Doherty, J. E., Nicolelis, M. A. L. (2008). Decoding of temporal intervals from cortical ensemble activity. Journal of Neurophysiology, 99, 166–186.
— Lee, T. P., Buonomano, D. V. (2012). Unsupervised formation of vocalization-sensitive neurons: a cortical model based on short-term and homeostatic plasticity. Neural Computation, 24, 2579–2603.
— Lehiste, I. (1960). An acoustic — phonetic study of internal open juncture. Phonetica, 5 (suppl. 1), 5–54.
— Lehiste, I., Olive, J. P., Streeter, L. A. (1976). Role of duration in disambiguating syntactically ambiguous sentences. Journal of the Acoustical Society of America, 60, 1199–1202.
— Leon, M. I., Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38, 317–327.
— Levine, R. (1996). The geography of time. New York: Basic Books.
— Levy, W. B., Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8, 791–797.
— Lewis, P. A., Miall, R. C., Daan, S., Kacelnik, A. (2003). Interval timing in mice does not rely upon the circadian pacemaker. Neuroscience Letters, 348, 131–134.
— Libet, B., Gleason, C. A., Wright, E. W., Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain, 106 (Pt. 3), 623–642.
— Lieving, L. M., Lane, S. D., Cherek, D. R., Tcheremissine, O. V. (2006). Effects of marijuana on temporal discriminations in humans. Behavioral Pharmacology, 17, 173–183.
— Livesey, A. C., Wall, M. B., Smith, A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45, 321–331.
— Lockwood, M. (2005). The labyrinth of time: Introducing the universe. Oxford: Oxford University Press.
— Loftus, E. F. (1996). Eyewitness testimony. Cambridge, MA: Harvard University Press.
— Loftus, E. F., Schooler, J. W., Boone, S. M., Kline, D. (1987). Time went by so slowly: overestimation of event duration by males and females. Applied Cognitive Psychology, 1, 3–13.
— Loh, D. H., Navarro, J., Hagopian, A., Wang, L. M., Deboer, T., Colwell, C. S. (2010). Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice. PLoS ONE, 5, e12546.