Книга Гравитация. Последнее искушение Эйнштейна, страница 58. Автор книги Маркус Чаун

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Гравитация. Последнее искушение Эйнштейна»

Cтраница 58

Физика — это способ предсказывать будущие события со 100%-ной вероятностью. Если сегодня Луна находится в определённой точке, то с помощью закона Ньютона мы можем абсолютно точно рассчитать её завтрашнее местоположение. Но раз вы можете увидеть в оконном стекле своё отражение, значит, предвидеть последствия столкновения со стеклом для каждого конкретного фотона невозможно. Мы можем лишь оценить вероятность того, что он пройдёт сквозь стекло или отразится от него.

Задумайтесь на мгновение, что это означает. Если вы бросите игральную кость, то результат может показаться вам непредсказуемым. Но на самом деле, если бы вы знали точную скорость полёта кости, могли проанализировать движение воздуха вокруг неё и имели достаточно мощный компьютер, вы смогли бы определить, какое число выпадет. Те события повседневной жизни, которые мы считаем случайными, на самом деле неслучайны — просто процесс их предсказания достаточно трудоёмкий. А вот поведение фотона при соприкосновении со стеклом непредсказуемо в принципе. Какой бы информацией мы ни обладали, насколько мощный компьютер бы ни использовали, мы не сможем со 100%-ной вероятностью определить действия фотона. Для квантовой кости каждый бросок выглядит как первый.

Это правило применимо не только к фотонам, но и ко всем прочим микроскопическим составляющим нашего мира, от электронов до кварков. Поведение каждой частицы фундаментально непредсказуемо.

Почему же тогда предсказуема наша повседневная реальность? Почему Солнце восходит каждое утро, а траекторию брошенного мяча можно проследить и поймать его? Одной рукой Природа даёт нам что-то, а другой — забирает. Пускай окружающий мир фундаментально непредсказуем, он предсказуемо непредсказуем. Инструментом для предсказания непредсказуемого выступает квантовая теория.

Осознание того, что вся Вселенная, по сути, основана на случайности, стало самым шокирующим за всю историю науки. И каждый раз, когда вы видите своё отражение в стекле, Вселенная напоминает вам об этом. Эта идея так не нравилась Эйнштейну, что он заявлял: «Бог не играет в кости». Пионер квантовой теории Нильс Бор отвечал ему на это: «Перестаньте указывать Богу, что делать с костями».

Эйнштейн сильно ошибался. Бог не просто играет в кости — если бы он этого не делал, не существовало бы Вселенной, или по крайней мере она не была бы достаточно сложной для того, чтобы в ней появились люди. [226]

Корпускулярно-волновой дуализм

То, что мы видим своё отражение в стекле, объяснимо и если свет представляет собой волну, и если он является потоком частиц. На самом деле корпускулярно-волновой дуализм — это ключевая характеристика микроскопического мира атомов и субатомных частиц. [227]

Кажется, что частицы, локализованные в пространстве, и волны, распространяющиеся по нему, фундаментально несовместимы. По крайней мере именно так считали физики 1920-х годов, которые поддерживали идеи Эйнштейна и Планка. «Я помню многочасовые споры, тянувшиеся до ночи и приводившие нас в отчаяние, — писал немецкий физик Вернер Гейзенберг. — После этого я отправлялся на прогулку в парк по соседству и постоянно прокручивал у себя в голове вопросы. Может ли природа действительно быть настолько абсурдной, какой она казалась нам в этих атомных экспериментах?» [228]

Правильный ответ: может. Микромир атомов и субатомных частиц совершенно не похож на нашу повседневную реальность (хотя этого следовало ожидать, учитывая, что он в миллиарды раз меньше нашего). Фотоны и их соседи по микромиру — это и не частицы, и не волны, а нечто незнакомое нам, для чего в нашем словаре ещё нет слов. Они словно объекты, которые мы не можем увидеть, а лишь следим за игрой их теней. «Мы сумели создать математическую схему [квантовую теорию]… способную адекватно описывать процессы на атомном уровне, — писал Гейзенберг, — но для их визуализации нам приходится полагаться на две неполные их аналогии, волновую и корпускулярную».

Итак, базовые строительные блоки Вселенной ведут себя одновременно как частицы и как волны. Но эти волны довольно необычны. Это так называемые математические «волны вероятности», которые выражают вероятность обнаружения частицы в какой-либо точке или определённого её поведения. Волна вероятности распространяется по пространству, отражается от препятствий и интерферирует сама с собой. [229] Её распространение описывается уравнением, созданным австрийским физиком Эрвином Шрёдингером в 1925 году. В тех местах, где значение амплитуды волны велико, высок и шанс на обнаружение частицы, а при низкой амплитуде эта вероятность незначительна. [230]

Шрёдингер создал своё уравнение, отправившись в выходные со своей девушкой в горы покататься на лыжах. Гениальность этого уравнения состоит в том, что оно объединяет волновую и корпускулярную половины реальности. Данное математическое решение фиксирует существование в природе корпускулярно-волнового дуализма и позволяет физикам проводить расчёты в реальном мире. В том же году, в котором появилось уравнение Шрёдингера, Гейзенберг вместе с Максом Борном и Паскуалем Йорданом разработали матричную механику — версию квантовой теории, которая внешне кажется отличной от неё, но на самом деле говорит о том же самом.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация