Для электронов внутри белого карлика это означает, что две соседние частицы имеют различную скорость. Если скорость одной из них определяется принципом неопределённости Гейзенберга, то скорость соседней должна быть выше (как показывает практика, в два раза). Соответственно, соседняя с ней частица будет иметь в три раза бо́льшую скорость и так далее.
Представьте себе лестницу, где каждая ступень соответствует всё большей и большей скорости. Согласно принципу Паули каждую ступеньку может занимать только один электрон (на самом деле два, но это уже совсем другая история).
[201] Принцип Паули утверждает, что электроны в белом карлике имеют невероятно высокие скорости, значительно превышающие те, которые предполагает принцип неопределённости Гейзенберга. Именно это стремительное движение электронов внутри звезды и противодействует сжатию под влиянием гравитации. Воздействие так называемого вырождения электронов поддерживает белый карлик в стабильном состоянии и не даёт ему схлопнуться до размеров меньше земных.
[202]
Итак, вот как обстояло положение дел в конце 1920-х годов. На выручку умирающим звёздам пришла квантовая теория, остановившая их падение в чёрные дыры с зияющей сингулярностью в самом сердце. Всё было под контролем. Всё было хорошо.
Вернее, лишь казалось.
Предел Чандрасекара
В августе 1930 года 19-летний индус поднялся в Бомбее на палубу корабля, направлявшегося в Англию. Целью его путешествия был Кембриджский университет. Я уже цитировал раньше его замечание о совершенстве чёрных дыр. Звали его Субраманьян Чандрасекар, и он был гением математики.
Плавание началось при плохой погоде, и корабль шёл на вполовину меньшей скорости, чем нужно. Но у Адена появилось солнце, а когда судно проходило через Суэцкий канал, Чандрасекар даже смог выйти из каюты, в которой находился почти всё время из-за морской болезни.
Представляю, как странно он выглядел, выходя на палубу с огромной стопкой книг по квантовой теории и астрофизике. Вспотев, еле добравшись до шезлонгов, он сваливает книги на один из них и сам в изнеможении падает на другой. Соотечественники, прогуливающиеся мимо, бросают на него удивлённые взгляды. За всё плавание он ни разу не пытался заговорить с ними и знает, что его считают нелюдимым, а может, и заносчивым. Но ему нет до этого дела. Наконец-то у него есть время, чтобы спокойно подумать. За бортом проплывают пески Синайского полуострова, ветер пустыни обжигает ему лицо, а он размышляет о белых карликах. Голова Чандрасекара занята одним вопросом: являются ли электроны в белом карлике релятивистскими? Закопавшись с головой в книги и бумаги, он создаёт формулу, которая объединит звёздную материю с квантовым поведением электронов при крайне высокой плотности. Он играет всеми известными ему значениями, пока наконец правильная комбинация не даёт ему ответ. Он проверяет его снова и снова, но сомнений нет. Электроны внутри белого карлика должны двигаться со скоростью, превышающей половину скорости света. На таких скоростях должны возникать явления, предусмотренные специальной теорией относительности. Говоря научным языком, эти электроны должны быть релятивистскими.
Мы говорим о невероятных скоростях: более 150 000 километров в секунду. Но для Чандрасекара самым важным было не это. Квантовой теории оказалось недостаточно для понимания белых карликов. Чтобы теория была правильной, в неё нужно было включить специальную теорию относительности.
Ночью всё небо было усыпано звёздами, но никому из пассажиров не приходило в голову, что странный молодой человек, увлечённый своими записями настолько, что иногда забывал поесть, прямо сейчас рассчитывает, что происходит внутри этих звёзд. Его тело оставалось на палубе корабля, но его дух витал сейчас где-то в космосе среди умирающих солнц.
У Чандрасекара ушло совсем немного времени на то, чтобы разработать релятивистскую теорию белых карликов. Так же быстро он открыл и ещё одно явление, неожиданное и необычное, если не сказать пугающее.
Чем большей массой обладает белый карлик, тем сильнее гравитация сжимает электроны внутри него и тем быстрее они движутся. Однако теория относительности Эйнштейна устанавливает предел скорости их движения — скорость света. Когда электроны достигают космического предела скорости, они становятся всё более и более массивными и набирать скорость им оказывается всё труднее и труднее. Здесь-то и возникает проблема. Именно постоянное движение электронов препятствует тому, что гравитация сожмёт звезду в одну точку. Если же под давлением гравитации электроны постепенно снижают свою скорость, то и сопротивление гравитации уменьшается. Молодой индийский математик, лежащий на шезлонге на палубе корабля и глядящий в небо, видел в нём надвигающуюся катастрофу, словно огни поезда, мчащегося прямо на него.
Белый карлик, в котором электроны сдерживают напор гравитации, похож на бейсбольный мяч, сжатый рукой игрока. Но когда порог массы оказывается преодолён, всё изменяется. Вместо мяча в ладони бейсболиста оказывается шарик зефира.
Чандрасекар проводил свои расчёты снова и снова, проверяя и перепроверяя их, ища в них ошибку. Но её не было. Если к концу жизни звезды её масса превышает массу Солнца более чем в 1,4 раза, давления от вырождения электронов оказывается недостаточно. Под воздействием гравитации происходит катастрофическое сжатие, и никакая сила во Вселенной не может его остановить. Ужасающей сингулярности нельзя избежать.
Нейтронные звёзды
Ещё через два года, в 1932 году, английский физик Джеймс Чедвик обнаружил частицу, равную по массе положительно заряженному протону, но не имеющую электрического заряда. Открытый им нейтрон дополнил структуру атома. Отрицательно заряженные электроны вращаются вокруг очень плотного ядра, которое состоит из протонов и нейтронов и составляет 99,9% атомной массы. Исключение составляет атом водорода, самого лёгкого элемента, ядро которого содержит лишь один протон.