Человек едет в лифте, как вдруг трос обрывается.
[151] Пассажир тут же оказывается в свободном падении. Предположим, всё это время он стоял на весах (да, это не самый реалистичный пример). Только что весы показывали 70 килограммов, а через секунду — уже ноль. Именно это и означает не чувствовать своего веса при падении.
Согласно Ньютону, из-под воздействия гравитации вырваться невозможно, потому что она лишь ослабевает с расстоянием, но никогда не исчезает полностью. Согласно Эйнштейну, гравитацию легко можно обойти. Всё, что для этого нужно, — свободное падение. Гравитация исчезает, и человек теряет свой вес.
Ситуация с падающим человеком аналогична ситуации с человеком, находящимся в открытом космосе вдали от притяжения любой из планет. Таким образом, возникает связь между законом всемирного тяготения и специальной теорией относительности, потому что в обоих описанных случаях действует последняя.
Стрелка на весах в падающем лифте остаётся на нуле, потому что одновременно с тем, как человек падает на весы, весы падают из-под его ног. Иными словами, человек падает с той же скоростью, что и весы, хотя он весит 70 килограммов, а весы — ощутимо меньше.
Тот факт, что все предметы (а не только 70-килограммовые люди и весы) падают под воздействием силы притяжения с одинаковой скоростью, был впервые отмечен Галилеем в XVII веке. Согласно легенде, он сбрасывал тяжёлые и лёгкие предметы с вершины Пизанской башни, и они касались земли одновременно.
На Земле подобные эксперименты усложняет сопротивление воздуха, которое замедляет падение предметов, имеющих большую площадь. Но в 1972 году командир «Аполлона-15» Дейв Скотт повторил опыт Галилея на Луне, где, разумеется, воздуха нет. Он сбросил молоток и перо с одинаковой высоты, и два облачка лунной пыли в месте их падения поднялись одновременно.
Тот факт, что под влиянием силы притяжения все тела падают с одинаковой скоростью, на самом деле достаточно необычен. Представьте себе, что будет, если приложить одинаковую силу к предметам с большой и малой массой, например к полному еды холодильнику и деревянной табуретке. Повседневный опыт подсказывает нам, что ускорение холодильника будет меньше, ведь большую массу сложнее столкнуть с места, чем массу поменьше.
[152] Большие массы сильнее сопротивляются движению, то есть имеют большую инерцию. По сути, это сопротивление движению и есть основа понятия «масса».
Странность гравитации состоит в том, что, даже несмотря на большие усилия, которые нужно приложить, чтобы сдвинуть с места большую массу, сила притяжения как будто подстраивается под неё таким образом, что массивный и лёгкий предметы всё равно падают с одинаковой скоростью. Тело, которое в два раза массивнее другого тела, испытывает в два раза большее влияние силы притяжения. Если тело массивнее другого в три раза, то и значение силы притяжения для него тоже будет выше в три раза, и так далее. Сбросьте холодильник и табуретку с вершины Пизанской башни (а ещё лучше на Луне, чтобы не задеть людей и избежать сопротивления воздуха), и они упадут одновременно, как молоток и перо, брошенные Дейвом Скоттом.
Технически сопротивление тела попыткам столкнуть его с места зависит от его инерционной массы mi. И это отражено во втором законе Ньютона, утверждающем, что если тело подвержено воздействию силы F, то его ускорение равняется F/mi. Сила притяжения, влияющая на тело, определяется его гравитационной массой mg.
Тело, инерционная масса которого в два раза больше инерционной массы другого тела, будет в два раза сильнее сопротивляться попыткам сдвинуть его с места. При этом оно падает с той же скоростью, что и тело меньшей массы, так как на него воздействует увеличенная в два раза сила тяжести. Иными словами, сопротивление тела движению, зависящее от инерционной массы, действует синхронно с силой притяжения, зависящей от гравитационной массы. Значит, можно сказать, что гравитационная масса mg и инерционная масса mi идентичны.
Со времён Галилея учёные полагали, что сопротивление тела движению и сила тяжести — это две совершенно разные вещи. И действительно, они не кажутся связанными между собой. Требовалась гениальность Эйнштейна, чтобы понять, что все эти учёные ошибались, а вернее, не видели того, что было прямо у них под носом. Тот факт, что падающий человек не чувствует своего веса (или, иными словами, что все тела под влиянием силы тяжести имеют одинаковое ускорение), может означать лишь одно. Гравитационная масса и инерционная масса — это одно и то же. Гравитация сама по себе является ускорением.
Как уже упоминалось ранее, в 1907 году Эйнштейн знал, что ему нужно расширить свою теорию относительности, чтобы она могла распространяться не только на тела, движущиеся равномерно относительно друг друга, но и на ускоряющиеся предметы. Ему также требовалась новая теория гравитации, так как ньютоновские законы не сочетались с общей теорией относительности. Каким удивительным открытием стало то, что общая теория относительности автоматически являлась и теорией гравитации! Словно кто-то запустил рекламную акцию «Купи одну теорию и получи вторую в подарок».
Требуется некоторое время, чтобы осознать простоту и ценность идеи Эйнштейна. Если сила тяжести и ускорение — это одно и то же, то гравитации не нужно подстраиваться под тела различной массы, чтобы они падали на землю одновременно. Это происходит естественно и автоматически, и вот почему.
Путешествие на ракете
Представим себе астронавта, который просыпается в космическом корабле вдали от притяжения Земли или любой другой планеты. Ускорение ракеты составляет 1 g, поэтому его ноги прочно стоят на полу корабля и он может спокойно ходить по нему, как по поверхности Земли.
[153] Если в иллюминаторы ничего не видно, то наш астронавт вполне может подумать, что он находится в обычной комнате на своей планете. Эйнштейн пошёл ещё дальше и отметил, что астронавт никак не сможет доказать, на Земле он сейчас или в космосе. На практике оказывается, что гравитация неотличима от ускорения.
Теперь давайте предположим, что наш астронавт (из любопытства или от скуки) решил повторить эксперимент Галилея и Дейва Скотта. Он берёт в руки молоток и перо, поднимает их на высоту своих плеч и отпускает. Они падают с одинаковой скоростью и достигают пола одновременно. Разумеется, астронавт, не знающий, что он на космическом корабле, приписывает это силе тяжести.