Книга Машина, платформа, толпа. Наше цифровое будущее, страница 23. Автор книги Эрик Бриньолфсон, Эндрю Макафи

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Машина, платформа, толпа. Наше цифровое будущее»

Cтраница 23

Кроме того, миры, в которых мы живем – и мир физических объектов, и мир идей и понятий, – не стремятся придерживаться единого набора правил. У табуретов есть ножки, а пуф хоть и является частным случаем табурета, ножек может не иметь. В 2002 году американские мужчины не имели права заключать брак друг с другом, а в 2015 году получили такую возможность. Белки не летают, за исключением летяг, которые способны планировать – это своего рода полет. Два отрицания могут иметь положительный смысл («она никогда не грустит»), но два положительных утверждения никогда не составляют отрицания. Ага, конечно.

Попытки систематизировать все правила для таких сложных вещей, как язык, запрограммировать их в компьютерные системы и добиться, чтобы они делали что-нибудь полезное, были большей частью безуспешными. Специалист по информатике Эрнест Дэвис и нейробиолог Гэри Маркус пишут: «В 2014 году мало какие коммерческие системы в значительной степени применяли рассуждения на основании автоматизированного здравого смысла… Никто еще не приблизился к созданию механизма, способного удовлетворительно рассуждать, опираясь на здравый смысл» [179]. Огромное количество людей успешно пользуются здравым смыслом, чтобы преодолевать создаваемые миром барьеры, сложности и непоследовательность. В этом людям не мешают даже искажения и ошибки разума, речь о которых шла в предыдущей главе. Но мы все еще не смогли разработать символьные цифровые системы, способные понимать реальное устройство мира так же хорошо, как наша собственная биологическая Система 1. Компьютеры становятся все эффективнее в узких областях применения искусственного интеллекта, таких как го или распознавание образов, но мы далеки от того, что Шейн Легг, один из основателей DeepMind, назвал общим искусственным интеллектом, – системы, способной применять интеллект к множеству непредусмотренных типов проблем.

ВЕЗДЕСУЩИЙ ПАРАДОКС ПОЛАНИ

Дэвис и Маркус рассказывают, в чем состоит, возможно, самое серьезное препятствие на пути к созданию таких систем: «Рассуждая с помощью обычного здравого смысла, люди… опираются на процессы, большей частью не поддающиеся самоанализу» [180]. Другими словами, когнитивная работа, которую мы делаем, легко проходя через чащобу правил, – это постоянная демонстрация парадокса Полани, утверждающего, что мы можем знать больше, чем способны рассказать. Как говорилось в главе 1, именно этот парадокс до недавнего времени мешал созданию программ, способных играть в го на одном уровне с людьми. Имейте в виду, что этот парадокс вездесущ. Во многих важных случаях мы просто не знаем и не можем знать, какие правила используем, чтобы делать что-то верно.

Этот факт кажется непреодолимым препятствием для создания любого рода автоматизации или искусственного интеллекта. Если никто в мире не знает правил, по которым люди что-то делают, включая самих людей, как же можно создать систему, основанную на правилах или любую другую, способную делать то же, что и мы? Кажется, что парадокс Полани строго ограничивает список человеческих задач, поддающихся автоматизации. Наш коллега из Массачусетского технологического института Дэвид Аутор пишет: «Рамки замены такого рода [замены людей компьютерами] ограничены, поскольку множество задач люди понимают по умолчанию и выполняют без усилий, но ни программисты, ни кто-либо другой не может сформулировать для таких задач явные “правила” или процедуры» [181].

МОЖНО ЛИ СОЗДАТЬ САМООБУЧАЮЩИЕСЯ МАШИНЫ?

Другой лагерь исследователей искусственного интеллекта (тех, кто отказался от символического подхода) с конца 1950-х пытался преодолеть парадокс Полани, разрабатывая системы, изучающие задачи тем же способом, каким дети учат язык, – с помощью опытов, повторения и обратной связи. Эти специалисты создали область машинного обучения, суть которой в точности соответствует названию.

Одной из первых цифровых машин, способных обучаться таким образом, был перцептрон – финансируемый Военно-морскими силами США проект думающей и обучающейся машины. Руководил им Фрэнк Розенблатт, ученый из Корнелльской лаборатории аэронавтики. Назначением перцептрона, появившегося в 1957 году, была классификация объектов, которые он видит, – например, предполагалось, что он сможет отличать кошек от собак [182]. В каком-то смысле он представлялся чем-то вроде крохотной версии мозга [183].

Примерно 100 миллиардов нейронов человеческого мозга не упорядочены по какой-то аккуратной схеме. Они сильно переплетены между собой: типичный нейрон воспринимает входящие сигналы от 10 тысяч своих соседей, а затем посылает выходящий сигнал примерно такому же количеству получателей [184]. Каждый раз, когда на определенное количество входов поступает достаточно сильный электрический сигнал, нейрон направляет собственный сигнал на все свои выходы. Величины, которые мы обозначили словами «достаточное количество» и «достаточно сильный», меняются со временем в зависимости от обратной связи, и нейрон придает каждому из своих входов важность, называемую «весом». В результате этих странных, сложных, не прекращающихся ни на мгновение процессов возникают память, умения, Система 1 и Система 2, внезапные озарения, когнитивные искажения и все остальное, что имеет отношение к нашему разуму.

Перцептрон не мог выполнять такую сложную работу. Его создали только для классификации простых изображений. В нем было 400 фотоэлементов, соединенных случайным образом (чтобы смоделировать запутанность мозга) в один слой искусственных нейронов. Первая демонстрация этой «нейронной сети» вкупе с уверенными прогнозами Розенблатта привела к тому, что газета New York Times написала в 1958 году о перцептроне как о «зародыше электронного компьютера, который, по ожиданиям [ВМС США], будет способен ходить, разговаривать, видеть, писать, воспроизводить себя и сознавать свое существование» [185].

Вход
Поиск по сайту
Ищем:
Календарь
Навигация