Книга Всё из ничего. Как возникла Вселенная, страница 13. Автор книги Лоуренс Краусс

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Всё из ничего. Как возникла Вселенная»

Cтраница 13

Первые выводы о существовании темного вещества в нашей Галактике породили совершенно новую область экспериментальной физики, и я рад отметить, что и сам сыграл роль в ее разработке. Как я уже говорил, частицы темного вещества окружают нас повсюду – и здесь, в комнате, где я набираю этот текст, и «там», в космосе. Следовательно, мы можем ставить эксперименты, чтобы искать темное вещество и элементарные частицы нового типа (или типов), из которых оно состоит.

Такие эксперименты проводятся в шахтах и туннелях глубоко под землей. Почему под землей? Потому что на поверхности Земли нас постоянно бомбардируют всевозможные космические лучи – и от Солнца, и от более далеких объектов. Поскольку темное вещество по самой своей природе не вступает в электромагнитное взаимодействие и не испускает свет, мы предполагаем, что оно взаимодействует с нормальным веществом очень слабо, поэтому зарегистрировать его будет невероятно трудно. Даже если мы каждый день подвергаемся бомбардировке миллионов частиц темного вещества, большинство из них проходят сквозь нас и сквозь Землю, даже не «заметив» нас, и мы их тоже не замечаем. Если хочешь обнаружить крайне редкие исключения из этого правила – те частицы темного вещества, которые все-таки рассеялись на атомах обычного вещества, – готовься регистрировать крайне редкие события. А чтобы это стало хотя бы в принципе возможно, необходимо в достаточной степени отгородиться от космических лучей, то есть уйти под землю.

Однако сейчас, когда я пишу эти строки, появилась и другая возможность, не менее интересная. Недавно запущен Большой адронный коллайдер, расположенный в Швейцарии, недалеко от Женевы, и это самый крупный и мощный в мире ускоритель частиц. У нас есть много причин полагать, что при очень высоких энергиях, с которыми сталкиваются протоны в этой установке, воссоздаются условия первых мгновений существования Вселенной, пусть и в микроскопически малых масштабах. В этих объемах те же самые взаимодействия, которые когда-то породили частицы темного вещества в космосе, могут породить такие же частицы в лаборатории! То есть сейчас идет большая гонка: кто первым обнаружит частицы темного вещества – экспериментаторы глубоко под землей или экспериментаторы на Большом адронном коллайдере? Хорошая новость состоит в том, что, кто бы ни выиграл гонку, никто не проиграет. Выиграем мы все, поскольку узнаем, из чего на самом деле состоит это вещество.

Астрофизические эксперименты, о которых я рассказал выше, не раскрыли природу темного вещества, зато показали нам, какое количество этого вещества существует на свете. Окончательно и прямо определить общее количество вещества во Вселенной стало возможно благодаря изящным выводам из измерений, полученных при гравитационном линзировании, вроде тех, о которых я уже говорил, в сочетании с наблюдениями рентгеновского излучения скоплений галактик. Независимую оценку общей массы скоплений можно провести потому, что температура газа в скоплениях зависит от общей массы системы, в которой он находится и излучает (в рентгеновском диапазоне). Результаты получились неожиданные и, как я уже упоминал, для многих из нас, ученых, огорчительные. Когда осела пыль (и буквально, и метафорически), оказалось, что общая масса, содержащаяся в галактиках и скоплениях и вокруг них, составляет лишь около 30 % общего количества массы, которая нужна, чтобы Вселенная была плоской. Обратите внимание, что и это количество более чем в 40 раз больше массы видимого вещества, которое, таким образом, составляет менее 1 % массы, необходимой для того, чтобы Вселенная оказалась плоской.

Эйнштейн был бы удивлен, если бы узнал, что его «статейка» в конечном итоге оказалась совсем не пустой. Благодаря поразительным новым инструментам для наблюдений и экспериментов, открывшим новые окна в космос, новым теоретическим разработкам, которые привели бы Эйнштейна в восторг, а также открытию темного вещества, которое бы сильно его взволновало, крошечный шажок Эйнштейна в мир искривленного пространства обернулся колоссальным скачком. К началу 1990-х гг. Священный Грааль космологии, похоже, удалось обрести. Наблюдения однозначно показали, что мы живем в открытой Вселенной, которая, следовательно, расширяется и будет расширяться вечно.

Но показали ли?

Глава 3
Свет из начала времен

…и ныне, и присно, и во веки веков.

КРАТКОЕ СЛАВОСЛОВИЕ

Если вдуматься, то сама идея определять общую кривизну Вселенной посредством измерения общей массы, которая в ней содержится, и решать обратную задачу с помощью уравнений ОТО чревата серьезными трудностями. Неизбежно приходит в голову вопрос: не прячется ли где-нибудь вещество так, что нам его не найти? Например, мы можем догадываться о существовании невидимого вещества в наблюдаемых системах вроде галактик и их скоплений на основании гравитационной динамики. А вдруг значительная масса умудряется спрятаться от нас где-то еще, вне галактик и скоплений, и мы ее не замечаем? Лучше было бы непосредственно измерить геометрию непосредственно всей видимой Вселенной.

Но как измерить трехмерную геометрию всей видимой Вселенной? Можно начать с более простого вопроса: как определить, что какой-то двумерный объект – вроде поверхности Земли – изогнут, если не можешь обойти всю Землю или подняться над ней на космическом корабле и посмотреть вниз?

Сначала можно спросить у какого-нибудь старшеклассника, какова сумма углов треугольника (только школу надо выбрать поприличнее, и лучше не американскую). Вам скажут, что эта сумма составляет 180°, поскольку школьник, конечно, изучал евклидову геометрию, ту, которая ассоциируется с плоскими тетрадными страничками. На искривленной двумерной поверхности вроде шара можно начертить треугольник, сумма углов которого будет гораздо больше 180°. Например, представьте, что вы рисуете линию вдоль экватора, затем проводите перпендикуляр к ней, доходите до северного полюса, а затем снова строите прямой угол и опускаете перпендикуляр к экватору, как на рисунке внизу. Три угла по 90° – это 270°, гораздо больше 180°. Вуаля!


Всё из ничего. Как возникла Вселенная

Оказывается, это простое двумерное рассуждение можно непосредственно и безупречно обобщить на три измерения, поскольку математики, первыми предложившие неплоские, или так называемые неевклидовы, геометрии, обнаружили, что такие же возможности сулят нам и трехмерные пространства. Более того, самый знаменитый математик XIX в. – Карл Фридрих Гаусс – так увлекся идеей, что наша Вселенная искривлена, что на основании данных геодезических съемок для карт 1820-х и 1830-х гг. измерил огромные треугольники между немецкими горными вершинами Хоэр-Хаген, Инзельберг и Брокен в надежде обнаружить кривизну пространства. Разумеется, эти горы и сами по себе расположены на искривленной поверхности Земли, а значит, кривизна двумерной поверхности влияет на любые попытки измерить кривизну пространства, в котором находится Земля, и Гаусс, конечно, должен был это учитывать. Думаю, он собирался вычесть из конечного результата соответствующие слагаемые и проверить, останется ли какая-то кривизна, которую можно отнести к кривизне окружающего пространства.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация