Книга Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта, страница 28. Автор книги Макс Тегмарк

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта»

Cтраница 28

Интуиция, творчество, стратегия

Еще одним поворотным моментом для меня стала победа созданного DeepMind искусственного интеллекта AlphaGo в матче из пяти партий в го против Ли Седоля, который на начало XXI века считался лучшим игроком в го в мире.

Тогда все ждали, что людей вот-вот лишат звания лучших игроков в го, как это случилось с шахматами десятилетиями раньше. И только настоящие знатоки го предсказывали, что на это потребуется еще одно десятилетие, и поэтому победа AlphaGo стала поворотным моментом для них так же, как и для меня. Ник Бострём и Рэй Курцвейл оба подчеркнули, что этот прорыв AI было очень трудно предвидеть, о чем свидетельствуют, в частности, интервью самого Ли Седоля до и после проигрыша в первых трех играх:

Октябрь 2015: «Оценивая нынешний уровень машины… я думаю, что выиграю почти все партии».

Февраль 2016 года: «Я слышал, что Google DeepMind AI стал на удивление силен и быстро учится, но я убежден, что смогу выиграть хотя бы в этот раз».

9 марта 2016 года: «Я был очень удивлен, так как совсем не ожидал, что могу проиграть».

10 марта 2016 года: «У меня нет слов… Я просто в шоке. Должен признать… что третья игра будет для меня нелегкой».

12 марта 2016 года: «Я чувствовал свое бессилие».

В течение года после победы над Ли Седолем улучшенный вариант AlphaGo обыграл двадцать лучших игроков в го в мире, не проиграв ни одной партии.

Почему все это воспринималось мной так лично? Я признавался выше, что считаю интуицию и способность к творчеству основными своими человеческими качествами, и, как я сейчас понимаю, в тот момент я почувствовал, что AlphaGo обладает обоими.

Играющие в го по очереди ставят черные и белые камни на доске 19 на 19 (см. рис. 3.2). Возможных позиций в го больше, чем атомов в нашей Вселенной, а это означает, что просчитать все интересные последствия каждого хода — дело безнадежное. Поэтому игроки в значительной степени полагаются на подсознательную интуицию, которая дополняет их сознательные рассуждения в оценке сильных и слабых сторон той или иной позиции, и у экспертов эта интуиция развивается в почти сверхъестественное чувство. Как мы видели в предыдущей главе, в результате глубокого обучения иногда возникает нечто напоминающее интуицию: глубокая нейронная сеть может определить, что на картинке изображена кошка, не имея возможности объяснить почему. Поэтому команда DeepMind поставила на идею, что глубокое обучение может распознавать не только кошек, но и сильные позиции в го. Главное, к чему они стремились, создавая AlphaGo, — было поженить интуицию, присущую глубокому обучению, с логической силой классического GOFAI [16], каков он был до революции глубокого обучения. Они взяли обширную базу данных, где было много позиций го как из игр, сыгранных людьми, так и из игр, сыгранных AlphaGo с клоном самого себя, и тренировали глубокую нейронную сеть предсказывать для каждой позиции вероятность итоговой победы белых. Кроме того, они натренировали отдельную сеть предсказывать вероятные следующие ходы. Затем они объединили эти две сети, пользуясь «старыми добрыми методами» для быстрого просмотра сокращенного списка наиболее вероятных будущих позиций, чтобы определить следующий ход, для которого следующая позиция окажется самой сильной.


Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта

Рис. 3.2

Продолжение DeepMind — искусственный интеллект AlphaGo. Пренебрегая тысячелетним человеческим опытом игры в го, он сделал невероятно творческий ход на пятой линии, вся сила которого обнаружилась только 50 ходов спустя, в результате у легенды го Ли Седоля не оставалось никаких шансов.


Детьми, появившимися в браке интуиции и логики, оказались ходы, которые были не просто сильными, — в некоторых случаях их с полным основанием можно назвать креативными. Например, тысячелетняя мудрость го учит, что в начале игры надо стремиться захватить третью и четвертую линии от края. Тут есть возможность для торга: игра на третьей линии дает возможность быстро проводить краткосрочные захваты территории на краю доски, в то время как игра на четвертой линии способствует долгосрочному стратегическому влиянию на центр.

На тридцать седьмом ходу второй партии AlphaGo потряс мир го, пойдя наперекор этой древней мудрости и начав играть на пятой линии (рис. 3.2), словно он больше доверял своей способности долгосрочного планирования, чем человек, и поэтому отдавал предпочтение стратегическому преимуществу, а не краткосрочной выгоде. Комментаторы были ошеломлены, Ли Седоль даже поднялся и на какое-то время покинул помещение, где шла игра . Они продолжали играть еще достаточно долго, было сделано еще примерно пятьдесят ходов, и только после этого основные события из нижнего левого угла доски переместились в центр, достигнув того самого камня, поставленного на тридцать седьмом ходу! И его присутствие здесь в конце концов сделало всю игру, навсегда внеся вторжение AlphaGo на пятую линию в анналы истории го как одно из самых важных открытий.

Именно из-за того, что игра в го требует интуиции и творчества, многие считают го в бо́льшей степени искусством, чем просто игрой. В Древнем Китае умение играть в го считалось одним из четырех «основных искусств» наряду с живописью, каллиграфией и игрой на цине [17], и оно остается чрезвычайно популярным в Азии: за первой партией между AlphaGo и Ли Седолем следили почти 300 миллионов человек. Результат матча глубоко потряс мир го, и победа AlphaGo стала для него важнейшей исторической вехой. Кэ Цзиэ, обладатель самого высокого рейтинга по го в то время, так прокомментировал это событие: «Человечество играло в го тысячи лет, и все же, как нам показал искусственный интеллект, мы всего лишь поцарапали его поверхность… Союз игроков-людей и игровых компьютеров открывает новую эру… Человек и искусственный интеллект смогут найти истину го вместе». Плодотворное сотрудничество между человеком и машиной, и в самом деле, представляется очень многообещающим во многих сферах, включая науку, где искусственный интеллект, надеюсь, поможет нам, людям, углубить наше понимание мира и в значительно большей мере реализовать наш потенциал.

В конце 2017 года команда DeepMind запустила следующую модель — AlphaZero. Человеческому искусству игры в го тысячи лет, были сыграны миллионы партий, но все они не понадобились AlphaZero, которая училась с нуля, играя сама с собой. Она не только разгромила AlphaGo, но и стала сильнейшим в мире игроком в шахматы — и это тоже исключительно играя сама с собой. После двух часов практики она могла победить любого шахматиста-человека, а через четыре — обыграла Stockfish, лучшую в мире шахматную программу. Меня тут особенно впечатляет не только то, что она била любого человека-шахматиста, но и то, что она обошла любого человека, занимающегося программированием искусственного интеллекта, она сделала устаревшим весь созданный людьми AI-софт, который разрабатывался несколько десятилетий. Иначе говоря, мы теперь не можем отмахнуться от идеи, что искусственный интеллект создает лучший искусственный интеллект.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация