На основе этих представлений, облеченных в конкретную математическую форму, оказалось довольно нетрудно рассчитать допустимые орбиты для более сложных атомов и даже молекул, состоящих из нескольких атомов, связанных электронами, которые обращаются сразу вокруг нескольких ядер. Поскольку строение молекул и их реакции лежат в основе всей химии и биологии, квантовая механика в принципе позволяет предсказать все происходящее вокруг нас в пределах, установленных принципом неопределенности. (Но на практике расчеты для систем с несколькими электронами оказываются настолько сложными, что не могут быть выполнены [аналитически].)
Общая теория относительности Эйнштейна определяет поведение Вселенной на больших масштабах. Это то, что можно назвать классической теорией, – она не учитывает квантовомеханический принцип неопределенности и поэтому не может быть согласована с другими теориями. Причина же согласия общей теории относительности с наблюдениями состоит в том, что все гравитационные поля, с которыми нам обычно приходится иметь дело, очень слабые. Однако согласно рассмотренным выше теоремам о сингулярностях как минимум в двух ситуациях – в черных дырах и во время Большого взрыва – гравитационное поле должно быть очень сильным. А в условиях таких сильных полей квантовые эффекты должны становиться существенными. Таким образом, в некотором смысле, предсказав существование точек с бесконечной плотностью, классическая общая теория относительности наметила собственный конец, совсем как классическая (то есть неквантовая) механика наметила свой конец через предсказанный ею вывод о неизбежности коллапса атомов до состояния с бесконечной плотностью. У нас пока еще нет полной и непротиворечивой теории, которая бы объединяла общую теорию относительности и квантовую механику, но мы уже знаем некоторые из свойств, которыми такая теория должна обладать. Мы рассмотрим следствия этих свойств для черных дыр и Большого взрыва в последующих главах. А пока вернемся к недавним попыткам объединить наши знания о других силах природы в единую квантовую теорию.
Глава пятая. Элементарные частицы и силы природы
Аристотель считал, что все вещество в мире родилось из четырех стихий: земли, воздуха, огня и воды. Эти стихии подвержены влиянию двух типов сил: тяжести – стремлению земли и воды опускаться – и легкости – стремлению воздуха и огня подниматься. Этот подход, подразделяющий составляющие Вселенной на вещество и силы, используется и в настоящее время.
Аристотель считал вещество непрерывным – то есть «часть» вещества можно делить на все более мелкие фрагменты до бесконечности: мы никогда не дойдем до крупинки, которую нельзя было бы далее разделить. Однако некоторые древнегреческие ученые, такие как Демокрит, считали, что вещество имеет зернистую структуру и что все в мире состоит из большого числа разных атомов. Само слово «атом» в греческом языке означает «неделимый». Этот спор продолжался на протяжении столетий в отсутствие каких бы то ни было реальных свидетельств в пользу той или иной точки зрения, пока в 1803 году британский химик и физик Джон Дальтон не заметил, что факт участия химических веществ в реакциях всегда в четко определенных пропорциях можно объяснить, предположив, что атомы исходных веществ, соединяясь, образуют структуры, названные впоследствии молекулами. Но атомистов окончательно признали правыми в этом противоборстве двух учений лишь в начале ХХ века. Важную роль при этом сыграло физическое соображение, высказанное Эйнштейном. В своей статье 1905 года, за несколько недель до выхода знаменитой статьи по специальной теории относительности, Эйнштейн обратил внимание на то, что так называемое броуновское движение – беспорядочное случайное движение мелких частиц пылевой взвеси в жидкости – можно объяснить столкновениями атомов жидкости с пылинками.
К этому времени уже появились сомнения в неделимости атомов. За несколько лет до работы Эйнштейна сотрудник колледжа Троицы Кембриджского университета Дж. Дж. Томсон доказал существование частицы вещества, названной электроном, причем его масса была в [две тысячи] раз меньше массы самого легкого из атомов. Томсон использовал установку, напоминающую трубку старомодного телевизора: в ней электроны уходили с докрасна раскаленной металлической нити, а благодаря отрицательному заряду их можно было ускорять электрическим полем в направлении покрытого фосфором экрана. При попадании электронов на экран возникали вспышки света. Вскоре стало ясно, что электроны исходили собственно изнутри атомов, и в 1911 году новозеландский физик Эрнест Резерфорд наконец показал, что атомы вещества имеют внутреннюю структуру: состоят из крохотного положительно заряженного ядра, вокруг которого обращаются несколько электронов. Резерфорд пришел к такому выводу, исследуя, как отклоняются, сталкиваясь с атомами, альфа-частицы – положительно заряженные частицы, испускаемые радиоактивными атомами.
Вначале считалось, что атомное ядро состоит из электронов и разного [для разных атомов] количества положительно заряженных частиц – протонов (от греческого слова, означающего «первый» – предполагалось, что протоны являются фундаментальными объектами, из которых состоит вещество). Но в 1932 году коллега Резерфорда по Кембриджу Джеймс Чедвик открыл, что атомные ядра содержат также и другие частицы почти с такой же массой, как и у протона, но без электрического заряда. Эти частицы получили название «нейтроны». За свое открытие Чедвик получил Нобелевскую премию и был избран главой колледжа Гонвилля и Киза в Кембридже (того самого колледжа, где я сейчас работаю). Впоследствии Чедвик ушел в отставку с этого поста из-за разногласий с научными сотрудниками. Когда группа молодых ученых, вернувшихся с войны, сместила многих старых профессоров с должностей, которые те занимали долгие годы, в колледже возникло ожесточенное противоборство. Это было еще до меня – меня приняли в колледж в 1965 году, уже на излете конфликта, когда из-за похожих разногласий был вынужден уйти в отставку другой глава колледжа и нобелевский лауреат сэр Невилл Мотт.
Еще 30 лет назад протоны и нейтроны считались «элементарными» частицами, но эксперименты по столкновению протонов и электронов на высоких скоростях показали, что в действительности они состоят из более мелких частиц. Физик из Калифорнийского технологического института Марри Гелл-Манн назвал их кварками и в 1969 году был удостоен Нобелевской премии за свои работы, посвященные этим частицам. Название это происходит из загадочной цитаты из романа Джеймса Джойса: «Три кварка для мастера Марка!»
[13]. Вообще слово quark («кварк») следует произносить как quart («кворт»), но с «к», а не «т» на конце. Однако это слово обычно рифмуют с lark («ларк»).
Есть несколько видов кварков – всего шесть «ароматов», называемых нижний, верхний, странный, очарованный, прелестный и истинный. Первые три известны с 60-х годов XX века, очарованный был открыт только в 1974 году, прелестный – в 1977 году, а истинный – в 1995 году. Кварки каждого аромата бывают трех «цветов» – красного, зеленого и синего. (Следует отметить, что эти термины – всего лишь условные обозначения: кварки намного меньше длины волны видимого света и поэтому не имеют цвета в общепринятом смысле. Просто современные физики отличаются более творческим подходом к выбору названий для частиц и явлений и не ограничиваются словами греческого языка!) Протоны и нейтроны состоят из трех кварков, по одному каждого цвета. Протон состоит из двух верхних и одного нижнего кварка, а нейтрон – из двух нижних и одного верхнего. Из других кварков (странных, очарованных, прелестных и истинных) тоже можно составлять частицы, которые, правда, оказываются намного более массивными и быстро распадаются на протоны и нейтроны.