Книга Увлекательно о космосе. Межпланетные путешествия, страница 27. Автор книги Яков Перельман

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Увлекательно о космосе. Межпланетные путешествия»

Cтраница 27

Итак, открытая спереди земная ракета с вложенной в нее космической стремительно движется по подготовленной для нее дороге. Наступает момент, когда надо освободить космическую ракету и пустить ее в мировое пространство. Каким образом это сделать? Циолковский указывает весьма простое средство: затормозить земную ракету – космическая вырвется тогда из нее по инерции и при одновременном пуске взрывного механизма начнет самостоятельно двигаться с возрастающей скоростью. Торможение же земной ракеты достигается просто тем, что конечный участок дороги оставляют несмазанным: увеличенное трение замедлит и наконец совсем прекратит движение вспомогательной ракеты без добавочного расхода энергии. Еще лучший способ торможения состоит в том, что из земной ракеты выдвигаются перпендикулярные ей тормозящие планы: сопротивление им воздуха при большой скорости громадно, и ракета скоро остановится. Тому же способствует открытая тупизна передней части ракеты. Использование земной ракеты для сообщения космической ракете начальной скорости, как мы уже заметили, ощутительно разгружает этот небесный корабль: оно освобождает его от необходимости нести с собой весьма большой запас горючего.

Мы знаем, что для определения солнечного притяжения и, следовательно, для свободных полетов во всей планетной системе ракета должна обладать скоростью около 17 км/с. Чтобы неподвижная ракета приобрела такую скорость, необходимо в случае горения водорода взять запас вещества для взрывания раз в 30 (а для ракеты с нефтью – в 70 раз) больше прочего веса ракеты. Между тем, если космическая ракета уже приобрела от разбега земной ракеты скорость 5 км/с, указанное отношение уменьшается втрое; запас веществ для взрывания (водорода и кислорода) должен быть только в 10 раз тяжелее незаряженной ракеты. Для получения 5-километровой секундной скорости нужен для земной ракеты путь по Земле в 25 км при ускорении 500 м/с2. Тяжесть в ракете увеличивается при этом в 50 раз (500: 10); пассажиры на это время должны быть погружены в воду, иначе они едва ли перенесут такую усиленную тяжесть. Вообще, получение на Земле таких скоростей встретит много затруднений. Однако можно ограничиться и меньшей скоростью.


Увлекательно о космосе. Межпланетные путешествия

Рис. 32. Ракеты Циолковского в полете (фантастический рисунок)


Чтобы покончить с земной ракетой, приведем еще несколько ориентирующих цифр. Вес ее должен быть около 50 т, из которых 40 т приходится на вещества для горения вместе с вложенной в нее 10-тонной космической ракетой, вполне снаряженная земная ракета будет весить 60 т. Впрочем, земная ракета может устраиваться и меньшего веса, но тогда выгода будет менее значительна. Продолжительность разбега зависит от длины пути. Взрывание ведется таким темпом, чтобы искусственная тяжесть, обусловленная нарастанием скорости, была весьма невелика – от 0,1 земной до – в крайнем случае – 10-кратной. При ускорении значительно большем земного пассажирам необходимо будет, по мнению Циолковского, погружаться в ванну для избежания вредных последствий усиленной тяжести. При ускорении же не более 30 м/с2 искусственная тяжесть не превосходит степени безвредно переносимой человеком. Такой же безопасной искусственной тяжести будут, конечно, подвержены и пассажиры, находящиеся в космической ракете. Гораздо сильнее искусственная тяжесть, порождаемая стремительным торможением земной ракеты на сравнительно коротком пути. По своей величине она заметно опаснее для нашего организма; поэтому необходимо устроить так, чтобы управление взрыванием в земной ракете осуществлялось автоматическим путем, без непосредственного участия человека. Пассажирам же космической ракеты это торможение не может причинить вред, так как в первый же момент торможения они, нисколько не уменьшая достаточной скорости, уже покинут в своем снаряде земную ракету.

Ракета космическая, предназначенная для межпланетных полетов, должна иметь сравнительно небольшие размеры. По Циолковскому, ее длина 10–20 м, поперечник 1–2 м. Для успешного планирования при спуске на Землю или на другие планеты понадобится, быть может, соединять вместе несколько таких сигарообразных ракет бок о бок. Оболочка может быть из стали (вольфрамовая, хромовая или марганцевая сталь) умеренной толщины. По расчетам Циолковского, оболочка ракеты в 100 м3 может весить меньше тонны (650 кг).

В качестве горючего вещества можно будет, по всей вероятности, обойтись нефтью как веществом недорогим и дающим газообразные продукты горения, вытекающие из трубы с довольно значительною скоростью – около 4 км/с. Конечно, гораздо выгоднее взрывать не нефть, а чистый жидкий водород (скорость отбрасываемых продуктов горения – до 5 км/с), но это вещество довольно дорогое. Необходимый для горения и дыхания кислород берется в сжиженном виде. Предпочтение, оказываемое жидкостям перед сильно сжатыми газами, вполне понятно. Сжатые газы необходимо было бы хранить в герметических толстостенных резервуарах, масса которых в несколько раз превышает массу их содержимого; запасать кислород в таком виде значило бы обременять ракету мертвым грузом, а мы знаем, как невыгоден для межпланетной ракеты каждый лишний килограмм мертвой массы. Сжиженный же газ оказывает на стенки сосуда сравнительно ничтожное давление (если хранить его, как обычно и делают, в открытом резервуаре). Низкая температура жидкого кислорода – около —180 °C – может быть использована для непрерывного охлаждения накаленных частей взрывной трубы.

Одна из самых ответственных частей ракеты – взрывная труба (дюза). В космической ракете Циолковского она должна иметь около 10 м в длину и 8 см в узкой части; вес ее около 30 кг. Горючее и кислород накачиваются в ее узкую часть мотором аэропланного типа мощностью до 100 л. с. Температура в начале трубы доходит до 3000 °C, но постепенно падает по мере приближения к открытому концу. Наклонная часть трубы, как мы уже говорили, охлаждается жидким кислородом. Труба имеет коническую форму с углом раструба не больше 30°; это во много раз сокращает длину трубы при хорошем использовании теплоты горения.

Может показаться странным, что космическая ракета, предназначенная для движения в пустоте мирового пространства, будет снабжена рулями: горизонтальным рулем высоты, отвесным рулем направления и рулем боковой устойчивости. Но не следует упускать из виду, во-первых, то, что ракете при спуске на Землю придется планировать в атмосфере без взрывания, подобно аэроплану. Во-вторых, рули понадобятся и вне атмосферы, в пустоте, для управления ракетой: быстрый поток вытекающих из трубы газов, встречая руль, уклоняется в сторону, вызывая тем самым поворот ракеты. Поэтому рули помещаются непосредственно у выходного отверстия взрывной трубы.

Излишне перечислять все те приспособления, которыми необходимо будет снабдить пассажирскую каюту. Романисты, мечтавшие о межпланетных перелетах, достаточно писали об этом и в общем довольно правильно. Окна из кварца с предохранительным слоем обыкновенного стекла соединят прочность с защитой пассажиров от ультрафиолетовых лучей Солнца и дадут им возможность обозревать окрестности и ориентироваться при управлении ракетой. Вот при каких условиях будут отправляться космические дирижабли в свой межпланетный рейс! Первый этап – кружение около земного шара наподобие его спутника. Второй – странствование в отдаленные зоны нашей Солнечной системы, к другим планетным мирам. То и другое нами уже рассмотрено. Следующий этап – спуск на планету – представляет гораздо больше затруднений, чем может казаться с первого взгляда. Ракета мчится с космической скоростью; пристать прямо к планете, которая движется в другом направлении и с другой скоростью, – значит подвергнуть ракету сокрушительному удару и неизбежной гибели. Как избегнуть удара, как уменьшить скорость настолько, чтобы возможен был безопасный спуск на планету? Не забудем, что то же затруднение возникает при возвращении на нашу родную планету. Необходимо изыскать средства его преодолеть.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация