С. Сингх, Э. Эрнст, Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Эксперимент Хилла и Долла стал новаторским и в плане научной методологии. Была показана важность медицинской статистики для здравоохранения
[91]. Благодаря Хиллу и Доллу, а также последовавшим за ними независимым исследованиям с аналогичными результатами, накопившийся массив информации оказался столь очевиден, показателен и бескомпромиссен, что долго сопротивляться ему не смогли даже могущественные табачные корпорации – они постепенно начали сдавать позиции. Вот это я называю силой доказательств!
Вы все еще курите? Не пора ли задуматься?
Махинации со статистикой
Обычный человек плохо разбирается в статистике. Этому есть ряд причин. Во-первых, теория вероятности и математическая статистика довольно сложны. Конечно, базовые понятия статистики вполне под силу для понимания среднему по успеваемости школьнику, но и они часто бывают контринтуитивны.
– Какова вероятность встретить динозавра на улице?
– 50 процентов. Либо встретишь, либо нет.
Прикладные вопросы математической статистики и теории вероятности мало изучают в школе. Даже в технических вузах часто делается акцент на скучной теории и абстрактных задачах (вроде раскладывания цветных шаров по коробкам), но не на жизненных примерах. А зря. Понимание статистических закономерностей позволяет разбираться в важных вопросах и не поддаваться на разные шарлатанские уловки.
Ваш друг десять раз подряд подбросил монетку и записал результаты на листке бумаги («О» – орел, «Р» – решка). Какой из трех вариантов результата наиболее вероятен?
1. ОРОРОРОРОР
2. ОРРОРООООР
3. РРРРРРРРРР
Рискну предположить, что вы выбрали второй вариант. Да, действительно, он кажется чем-то «более естественным» для результатов броска монеты. А вот выпадение решки десять раз подряд нам покажется некоей махинацией либо мистикой. На самом же деле все три варианта имеют одинаковую очень маленькую вероятность (ее даже можно рассчитать: 1 к 210). И это легко проверить: попытайтесь воспроизвести любую из них. Подобных хитрых трюков теория вероятности и математическая статистика знают очень много.
Статистика – замечательный инструмент для анализа информации и различных исследований. Но, как и любой другой инструмент, ее можно использовать как во благо, так и во вред. Поскольку для многих людей фраза «по статистике…» звучит довольно убедительно, мы часто сталкиваемся с различными статистическими манипуляциями. Искаженное восприятие информации может происходить вследствие: а) незнания основ статистики; б) неучтенных факторов (ошибочная оценка); в) намеренной фальсификации.
«Средняя зарплата по вузу – 30 тысяч рублей», – заявляет ректор института на собрании преподавательского состава. Кто-то иронично улыбается, кто-то с грустью вспоминает в расчетном листе свои 12 тысяч 500 рублей. И у всех один вопрос: откуда ректор взял эти цифры?
Ответ кроется за загадочным словом «средняя». Вряд ли имеет смысл откровенно лгать, когда можно немного поиграть с цифрами. При подробном рассмотрении окажется, что в расчет включены все заработки, включая доход от большого бизнеса нескольких самых богатых сотрудников вуза, занимающих высокие административные посты. Имело бы смысл, разбить доход по группам с указанием количества сотрудников, получающих тот или иной доход. Но цифра в 30 тысяч, согласитесь, звучит убедительнее (особенно, если ее подавать в отчете для Министерства образования и науки).
Закон больших чисел
В Москве живет 12 миллионов человек. Стало быть, шанс один на миллион выпадает в ней по 12 раз в день.
«Ученые признают свое бессилие перед проблемой возникновения жизни. Вероятность самопроизвольного зарождения жизни на Земле столь уничтожающе мала, что даже самые закоренелые скептики сдаются: для зарождения жизни необходима внешняя разумная причина», – примерно так выглядит типичный аргумент антиэволюционистов по вопросу происхождения жизни. Но на самом деле низкая вероятность зарождения жизни – не повод отказываться от теории абиогенеза
[92]. И вот почему.
Во-первых, у нас нет достаточного количества данных, чтобы точно оценить вероятность абиогенного возникновения жизни. Вполне возможно, это не такое маловероятное событие, как нам кажется.
Во-вторых, сколько подходящих мест для появления жизни нам нужно рассмотреть? Давайте оценим количество планет в наблюдаемой Вселенной. По оценкам ученых, только в нашей Галактике содержится от 200 до 400 миллиардов звезд. Возьмем для среднестатистической галактики условную низкую оценку – 100 миллиардов звезд. Количество галактик в известной Вселенной тоже не меньше 100 миллиардов. Число планет в звездных системах сопоставимо с количеством звезд. Возьмем нижнюю оценку: «Одна звезда – одна планета» (на самом деле у многих звезд по нескольку планет). Таким образом, примерное количество планет в известной нам Вселенной равно 100 миллиардов умножить на 100 миллиардов (100000000000 × 100000000000 = 1022), то есть десять секстиллионов.
Теперь пусть вероятность зарождения жизни составляет «один шанс на миллион». Значит, жизнь должна зародиться на одной миллионной части всех планет Вселенной, то есть число планет с жизнью равно одной миллионной, умноженной на десять секстиллионов. Мы получим 1016 планет или десять квадриллионов (единица с шестнадцатью нулями). Сложно представить это число, это очень и очень много. При такой оценке даже в нашем Млечном Пути должно существовать минимум 200 тысяч обитаемых планет (одна миллионная умножается на 200 миллиардов).
Хорошо, допустим, мы погорячились. Пусть шанс зарождения жизни «один на миллиард». Тогда обитаемых планет в нашей Галактике должно быть целых двести. А во всей наблюдаемой Вселенной – 1013 или десять триллионов. И это мы взяли заниженные оценки числа планет и рассматриваем только наблюдаемую Вселенную. А за границей наблюдения тоже есть галактики, звезды и планеты. Даже если учесть тот факт, что для зарождения жизни земного типа подходят не все планеты, даже если землеподобные планеты составляют 5-10 % от всего количества – все равно получается огромное число. Так что все у ученых хорошо, оптимизм можно не терять. Закон больших чисел в действии: даже маловероятное событие при огромном количестве повторений наверняка случится. Из секстиллионов планет, подходящих для зарождения жизни, по крайней мере на одной жизнь точно зародилась. Наверное, есть и другие.