Книга В поисках частицы Бога, страница 22. Автор книги Иэн Сэмпл

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «В поисках частицы Бога»

Cтраница 22

В 1964 году, после опубликования первых статей о поле Хиггса, Питер приступил к обобщению уже построенной теории. Он проделал расчеты и вставил в них параметры субатомных частиц, рассчитывая, что рано или поздно одно с другим сойдется и выстроится картина, из которой станет видно, как механизм Хиггса приводит к появлению массы у одних частиц, а других оставляет без нее. Однако его постигло разочарование. Шли месяцы, а заметного продвижения все не было. Как Хиггс ни бился, цель по-прежнему оставалась далеко.

Не лучше шли дела и в Брюсселе. У Роберта Браута и Франсуа Энглера тоже никак не получалось объяснить, почему некоторые частицы в природе обладают массой, а другие — нет. Кончилось тем, что они поручили эту задачу молодой аспирантке, но и у той ничего не вышло. Итак, в Европе работа над хиггсовским механизмом была на грани провала.

А между тем Джерри Гуральник вернулся в Америку. Дела у него шли плохо. Он боялся, что вообще не сможет заниматься наукой. Сокрушительный разгром, которому Гейзенберг подверг его работу в Фельдафинге, подорвал его веру в себя и в теорию, над которой он работал вместе с Диком Хагеном и Томом Кибблом. Позже Гуральник мне говорил, что эта история повергла его в глубокую депрессию, — он чувствовал себя так, словно его жестоко избили.

Гуральнику тогда пришлось забыть о теории происхождения массы. Он получил место в Роче стерском университете штата Нью-Йорк, где работал и Дик Хаген. Спустя год его пригласил заведующий кафедрой физики высоких энергий Роберт Маршак, который дал понять Гуральнику, что если он хочет заниматься физикой, то должен бросить размышлять о нарушении симметрии. Много лет спустя, в 1983 году, Маршак публично извинился перед Гуральником. Выступая на совещании в Шелтер-Айленде, в Нью-Йорке, он сказал, что его тогдашние рекомендации, вероятно, будут стоить Гуральнику Нобелевской премии 83.


Здание Роберт-Ли-Мур-Холл, входящее в комплекс Техасского университета, — не самое красивое в Остине. Если посмотреть на него со стороны кампуса, оно выглядит как огромная уродливая коробка из-под обуви с щелями-окнами и пристройкой сбоку. Изнутри кажется, что оно специально построено так, чтобы запутать людей или, по крайней мере, отбить охоту у идиотов, попавших сюда, идти дальше. Первый этаж — на самом деле четвертый, то есть, чтобы попасть на девятый, нужно подняться в лифте на пять этажей наверх. И именно на девятом этаже находится офис одного из самых уважаемых физиков в мире — Стивена Вайнберга, к которому я и направляюсь.

Стивен Вайнберг руководит отделением теоретической физики в Университете Остина. Он приезжает на работу в костюме и шляпе-панаме и прогуливается, опираясь на палку, которой пользуется с тех пор, как его колено поразил артрит. Вайнберг встречает меня в коридоре дружеской улыбкой, распахивает дверь в свой кабинет и садится перед вазочкой с фисташками. История, которую я хочу услышать, началась более сорока лет назад...

Шел 1967 год. Вайнбергу было 34 года, и он работал в Массачусетском технологическом институте в Кембридже, штат Массачусетс. Чтобы его жена смогла учиться на юридическом факультете Гарвардского университета, он решил переехать в Бостон, для чего взял отпуск в своем университете в Беркли Калифорния, где занимал пост профессора физики Вайнбергу было непросто — он с женой и маленькой дочкой только что въехал в свой второй съемный дом, девочке была нужна няня, и ко всему прочему его работа застопорилась.

Вайнберг всю осень не расставался с карандашом и бумагой, выписывая уравнения и стараясь понять, что в них можно увидеть. Он пытался с помощью механизма Хиггса объяснить некоторые тонкие различия между протонами и нейтронами — частицами атомных ядер. А когда увидел, что из его уравнений следует наличие нулевой массы у известных в ядерной физике частиц — ро-мезонов, — то понял, что пришло время отказаться от этих уравнений. Дело в том, что физики уже знали, что масса у ро-мезонов ненулевая. “Это привело меня в жуткое уныние, — рассказывал он. — Как заниматься теорией, если понимаешь, что она приводит к неправильным результатам!

Вайнберг описал это свое разочарование позже, в 1997 году, в статье для ныне несуществующего глянцевого журнала “George”, одним из основателей которого был Джон Кеннеди-младший: “Противоречия такого рода трудно разрешить, сидя за столом и делая расчеты. — вы просто будете ходить по округу. Иногда полезно оставить задачу повариться в подсознании, а в это время выйти из дома, посидеть на скамейке в парке и посмотреть, как ваша дочь играет в песочнице” 84.

Однажды несколько недель спустя, в середине сентября Вайнберг ехал в офис в Массачусетском технологическом институте в своем красном спорткаре “камаро”, и вдруг его осенило: неправильной была не сама его теория, а только ее интерпретация! Уравнения, которые он вывел, не описывали тонкие различия между протонами и нейтронами, зато прекрасно описывали так называемую четвертую силу, существующую в природе. “Я дал правильный ответ на неправильный вопрос”, — рассказывал он.

Четвертая сила природы — наверное, самая малоизвестная из всех. Большинство людей знакомы с силой тяжести и электромагнитной силой. Электромагнитное взаимодействие, например, используется в электронных приборах, а еще заставляет волосы вставать дыбом в грозу. Третья сила — сила, участвующая в сильном взаимодействии, она в 137 раз сильнее, чем электромагнитная, и ее дело — удерживать частицы внутри атомных ядер. А вот что такое четвертая сила — не очень ясно. Она отвечает за слабое взаимодействие и за некоторые виды радиоактивного распада. Внутри Солнца слабое взаимодействие превращает водород в дейтерий (тяжелый водород) — сырье для термоядерных реакций, благодаря которым наша звезда светится.

Слабые силы действуют лишь на малых расстояниях. В то время как радиус действия электромагнитной силы огромен, слабая сила ощущается только при приближении на расстояние, равное одной стомиллионной доли нанометра, а это одна сотая диаметра атомного ядра, расстояние столь малое, что физики считают: слабая сила включается лишь при непосредственном контакте частиц.

Приехав в свой офис в Массачусетском технологическом институте, Вайнберг стал набрасывать черновой вариант теории. Вскоре он понял, что безмассовая частица, которая разрушала его прежние построения, была на самом деле фотоном — действительно безмассовой частицей, квантом света и переносчиком электромагнитного взаимодействия. Это было основным выводом и означало, что уравнения Вайнберга в рамках единой обобщающей теории описывают и слабые и электромагнитные силы. Вайнберг, сам не осознавая того, объединил две силы природы. С тех пор как в XIX веке Максвелл объединил электричество и магнетизм, подобное объединение было сделано впервые.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация