По мере того как работа Гейзенберга продвигалась вперед, стала проясняться механика атома
46. Волнуясь, он делал множество ошибок, нервничал. “Я был сильно взволнован, — писал он о своем пребывании на Гельголанде. — У меня было ощущение, что сквозь пелену множества беспорядочных атомных явлений я увидел удивительно красивую картину, и тогда я почувствовал легкое головокружение”. Наконец Гейзенберг завершил первый расчет, выполненный с помощью своей новой (матричной) техники. Случилось это в 3 часа ночи. Слишком возбужденный, чтобы спать, он вышел из дома и побрел к южной оконечности Гельголанда, вскарабкался на скалу, которая торчала над морем, и дождался восхода солнца.
Когда Гейзенберг вернулся в Геттинген, Макс Борн просмотрел его математические выкладки и понял, что теория верна. Вскоре они втроем (третьим стал молодой теоретик Паскуаль Иордан) доработали теорию, превратив ее в то, что потом стало известно как матричная механика. Называлась она так потому, что используемые термины записывались в виде таблиц или матриц.
Работа Гейзенберга была первым настоящим вариантом квантовой механики, а вскоре появился на свет и второй. В преддверии Рождества 1925 года австрийский физик Эрвин Шрёдингер, тогда работавший в Университете Цюриха, снял на несколько недель живописный заснеженный домик в Австрийских Альпах. Там он начал работать над собственной квантовой теорией. Шрёдингер, как всегда, пригласил с собой в путешествие свою старинную подругу, оставив жену Анни дома
47. Анни была не из тех, кто любит жаловаться, да и Шрёдингер для нее всегда был выше критики. Кроме того, у нее тоже был любовник — ближайший друг и коллега мужа по университету математик Герман Вейль.
Шрёдингер использовал совершенно иной подход, чем Гейзенберг. Его отправной точкой была идея, выдвинутая годом ранее французским физиком Луи де Бройлем, который утверждал, что электроны ведут себя как волны
48. Шрёдингер провел в трудах все рождественские каникулы — каждый шаг вперед давался ох как нелегко! 27 декабря он написал своему другу мюнхенскому физику Вилли Вину, лауреату Нобелевской премии 1911 года: “На данный момент я борюсь с новой атомной теорией. Если бы я знал лучше математику! Однако я настроен весьма оптимистически в отношении этой штуки и рассчитываю, что, если только... смогу справиться с ней, будет очень красиво”.
Ко времени возвращения в Цюрих Шрёдингер превратил расплывчатую концепцию де Бройля в новую версию квантовой механики. Вместо непонятных гейзенберговских матриц Шрёдингер в своей теории использовал известное физикам уравнение, очень похожее на волновое. Впервые ученые получили точную квантовую формулу, которую они могли бы использовать для описания частиц в любом атоме или молекуле. (Кем бы ни была спутница Шрёдингера в то Рождество, трудно удержаться и не поразмышлять, на такое ли романтическое приключение она рассчитывала...)
Появление двух версий квантовой механики привело к тому, что новая эра в физике началась некрасиво
49. Между Гейзенбергом и Шрёдингером всегда существовала неприязнь. Увидев матричную механику, Шрёдингер сказал, что ее вид “обескуражил, если не отвратил его”. Оценка Гейзенбергом теории Шрёдингера, известной под названием “волновая механика”, была не более лестной: “Чем больше я думаю о ней... тем более отталкивающей ее нахожу”. Теории раскололи физическое сообщество на два враждующих лагеря, причем без серьезной на то причины. Выяснилось, что, хотя теории выглядели на бумаге очень разными, по существу они различались мало. Математик может вывести одну из другой. Судьба оказалась более благосклонной к теории Шрёдингера, и она была принята большинством физиков — не в последнюю очередь потому, что математический аппарат, использованный в ней, был им уже хорошо знаком.
При всей своей красоте уравнение Шрёдингера имело существенный недостаток. Казалось, оно не согласуется со специальной теорией относительности Эйнштейна, которая совершила революцию в умах ученых в 1905 году. Недостаток был серьезным: если использовать уравнение Шрёдингера для описания частиц с очень большими энергиями, движущимися со скоростью, близкой к скорости света, результаты будут заведомой чушью.
Объединение квантовой механики с теорией относительности считается одним из наиболее важных достижений физики XX века. Эту заключительную высоту взял Поль Дирак, сын эмигранта из Швейцарии, который изучал инженерное дело в Бристольском университете на год раньше Томаса Хиггса
50. Когда Томас Хиггс переехал в Ньюкасл и начал работать на Би-би-си, Дирак был приглашен в Кембриджский университет и там с головой погрузился в изучение работ Эйнштейна и пионеров квантовой механики — Гейзенберга и Шрёдингера.
В конце 1927 года в возрасте 25 лет Дирак вывел уравнение, которое многие физики считают одним из самых красивых в истории науки. Его и сейчас можно увидеть высеченным на мемориале Дирака в Вестминстерском аббатстве. Оно примирило квантовую механику с теорией относительности, а также объяснило важное свойство электронов — спин (магнитный момент). Уравнение даже содержало намек на существование частиц с таким загадочным свойством, как отрицательная энергия (масса). Несколько лет спустя, в 1932 году, Карл Андерсон, физик из Калифорнийского технологического института, подтвердил озадачившее всех предсказание Дирака, открыв положительно заряженные электроны — позитроны. Это был первый пример того, что мы сейчас называем антиматерией
51.
Дирак — неудавшийся инженер, ставший выдающимся физиком, — совершил один из величайших переворотов в истории квантовой механики
52. В это время Фримен Дайсон был маленьким мальчиком и жил в Винчестере, в Южной Англии. Позже, когда он вырос и сам стал ученым, он возвел Дирака на пьедестал. Его открытия Дайсон описывал так: “В великих работах других пионеров квантовой физики было больше изъянов, они были менее совершенными. Его великие открытия были похожи на изысканные мраморные статуи, падавшие с неба одна за другой. Казалось, он был в состоянии сотворить чудо — вывести законы природы из чистой мысли, и именно эта его способность сделала его уникальным”.