Магнитное поле в ядре, по всей видимости, устроено очень необычно. Дело в том, что протоны в ядре должны находиться в сверхтекучем состоянии (в ядре ток должен быть связан именно с протонами, а не электронами). Сверхтекучесть заряженных частиц означает наличие сверхпроводимости. А сверхпроводники с магнитным полем не дружат. Поле или совсем выталкивается из сверхпроводника, или разбивается на квантовые магнитные трубки, в которых разрушена сверхпроводимость. Скорее всего, недра нейтронных звезд представляют собой сверхпроводник второго рода. Огромное количество магнитных трубок пронизывает ядро нейтронной звезды. Теперь для затухания поля надо, чтобы эти трубки выталкивались из ядра в кору: только там их можно будет уничтожить. Это может происходить по мере замедления вращения нейтронной звезды, но здесь есть много неопределенностей. Поэтому часто предполагают, что эволюция поля в ядре нейтронной звезды не слишком сильно сказывается на наблюдательных проявлениях. Мы ниже также будем придерживаться этой гипотезы.
Есть еще один простой важный вопрос: откуда токи берутся? Первая часть ответа очень проста: они остаются от ядра звезды. Нейтронная звезда образуется в процессе коллапса. Если мы представим себе ядро звезды пронизанным магнитными силовыми линиями, то при сжатии линии сохранятся (как говорят, сохранится магнитный поток). Плотность линий возрастает при сжатии. Соответственно, возрастает поле. Если у нас есть ядро звезды радиусом несколько тысяч километров, то при сжатии до размеров нейтронной звезды поле вырастет в десятки или даже сотни тысяч раз. Так можно объяснить поля обычных радиопульсаров. Для магнитаров есть вторая часть ответа: нужно дополнительно усиливать поле, например, за счет динамо-механизма.
Схема коллапса с сохранением магнитного потока. Видно, что радиус объекта уменьшается, а число линий остается прежним. Значит, количество силовых линий, проходящих через элемент поверхности единичной площади, растет. Это означает усиление магнитного поля на поверхности.
Итак, допустим, токи в основном сосредоточены в коре. Тогда они будут уменьшаться просто за счет электрического сопротивления. Оно может определяться двумя основными факторами. Во-первых, есть дефекты в микроструктуре вещества коры. Они будут препятствовать потоку электронов – т. е. току. Во-вторых, кора может быть горячей. Тогда электронам будут мешать тепловые колебания – фононы. Пока нейтронная звезда молодая и горячая, доминирует затухание токов на фононах. Позже, когда звезда остынет, – на дефектах коры.
Затуханию токов может помогать еще один процесс, он особенно важен для сильных полей – т. е. для магнитаров. Это так называемый холловский каскад. Магнитные поля в коре могут иметь сложную структуру, не такую, как у обыкновенного дипольного поля, которое, как правило, представляет собой наиболее крупный элемент структуры. Мелкомасштабные поля затухают быстрее, и если придумать механизм, из-за которого энергия будет перекачиваться из больших масштабов в маленькие, то диссипация будет идти быстрее. Холловский каскад как раз приводит к тому, что крупномасштабное поле постепенно разбивается на мелкие составляющие, что приводит к более быстрому уменьшению глобального поля. А значит, к более активному энерговыделению.
Как бы то ни было, поле может (и должно!) уменьшаться. Чем сильнее поля – тем заметнее этот эффект. Уменьшение поля в некотором смысле имитирует замедление вращения: радиопульсар быстрее выключается, раньше происходит переход на стадию пропеллера, раньше может начаться аккреция. Но есть и более прямые проявления затухания поля.
Магнитное поле имеет энергию. Вообще говоря, большую. По формуле E = mc² в коре нейтронной звезды поле обычно соответствует плотности больше сотни грамм в кубическом сантиметре. А у магнитаров речь идет уже о многих тоннах в кубическом сантиметре! Это много. И эту энергию можно выделить. Кора даже может начать трескаться и разламываться после уменьшения энергии поля, так как это аналогично уменьшению давления в коре.
Поле порождается токами. Мы знаем два основных вида выделения энергии тока: какой-нибудь прибор либо греется постепенно, либо происходит короткое замыкание. В нейтронных звездах реализуются оба варианта.
Во-первых, постепенное затухание магнитного поля приводит к нагреву коры нейтронной звезды. Если поля велики, то эффект может быть значительным, и некоторые нейтронные звезды видны как рентгеновские источники именно благодаря такому «электрическому подогреву». Во-вторых, «короткие замыкания» приводят к вспышкам. Это основное свойство магнитаров, выделяющее их среди других нейтронных звезд.
Из-за эволюции поля может меняться его структура. Магнитное поле имеет много составляющих, т. е. это не просто «бабочка» диполя – это набор очень разных компонент, которые обычно быстро уменьшаются с расстоянием от поверхности нейтронной звезды (поэтому в большом масштабе всегда доминирует дипольное поле, оно спадает с расстоянием медленнее в сравнении с более «кудрявыми» компонентами), но вблизи поверхности они играют важную роль, направляя течение аккрецируемого вещества или формируя распределение поверхностной температуры при остывании нейтронных звезд. Разные компоненты эволюционируют с разной скоростью. Кроме того, они могут обмениваться энергией. Сейчас это научились воспроизводить в компьютерных расчетах. Такие особенности эволюции могут объяснить, например, магнитары со слабым дипольным полем. Они замедляются, как обычные пульсары, но вспыхивают, как настоящие магнитары, поскольку сильные поля (и токи) в них есть, только их структура иная. Кажется, что сильное поле все-таки не утаишь – как шило в мешке. Разве что взять мешок потолще…
«Толстый мешок» можно создать вокруг нейтронной звезды прямо в момент ее формирования. После взрыва сверхновой значительная масса вещества может выпадать обратно на сколлапсировавшее ядро. Этот процесс может занимать несколько часов. Нейтронная звезда (вместе со своим магнитным полем) формируется гораздо быстрее. Поэтому можно представить себе такую картину. На замагниченный компактный объект течет огромный поток плазмы. Давление настолько велико, что магнитосфера оказывается смятой. Теперь не магнитные силовые линии диктуют веществу, что надо течь на полюса, – теперь вещество дает силовым линиям команду «лежать». Поле прижимается к поверхности и укутывается слоем плазмы.
Иногда вещества выпадает много. Масса может составить и несколько солнечных. Нейтронная звезда не способна вынести такое давление и превращается в черную дыру. Но если упало всего лишь несколько тысячных или сотых массы Солнца, то в итоге получится нейтронная звезда, в коре которой продолжают течь мощные токи, но снаружи мы не видим сильного поля. Такие источники мы наблюдаем, например, как центральные компактные объекты в остатках сверхновых. Их еще иногда называют антимагнитарами, так как на диаграмме «период – темп замедления» они лежат относительно основной группы пульсаров с противоположной по сравнению с магнитарами стороны. При периодах в сотые или десятые доли секунды они обладают дипольными полями (которые отвечают за замедление вращения нейтронной звезды) в десятки и сотни раз меньше, чем у радиопульсаров. Но они не всегда останутся такими.