Книга Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики, страница 34. Автор книги Леонард Сасскинд

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики»

Cтраница 34

Одно из самых неожиданных и странных открытий современной физики состоит в том, что в реальном мире нет надобности в Птолемеевом законе. Природа уже предусмотрела такой закон, и даже короли не способны его нарушить. Это один из глубочайших и трудных для понимания законов природы, который был нами открыт: максимальное количество информации, которое может содержаться в области пространства, равно площади этой области, а не ее объему. Это странное ограничение на заполнение пространства информацией станет темой главы 18.

Энтропия и тепло

Тепло — это энергия случайного хаотического движения, а энтропия — это количество скрытой микроскопической информации. Рассмотрим ванну с водой, на этот раз охлажденной до наименьшей возможной температуры — абсолютного нуля, точки, в которой молекулы зафиксированы в строго определенных местах ледяного кристалла. Имеется очень небольшая неопределенность в положении каждой молекулы. Фактически всякий, кто знает теорию ледяных кристаллов, может даже без микроскопа точно сказать, где находится каждый атом. Нет никакой скрытой информации. Энергия, температура и энтропия — все равны нулю.

Теперь добавим немного тепла, подогрев лед. Молекулы начинают подрагивать, но только слегка. Небольшое количество информации потеряно; некоторые детали, пусть и немногие, выходят из-под нашего контроля. Число конфигураций, которые мы можем спутать между собой, становится больше, чем прежде. Так порция тепла повышает энтропию, и с добавлением энергии все только ухудшается. Кристалл приближается к точке плавления, а молекулы начинают смещаться друг относительно друга. Уследить за всеми подробностями вскоре становится невозможно. Другими словами, с ростом энергии растет и энтропия.

Энергия и энтропия — не одно и то же. Энергия принимает множество форм, но одна из них, тепло, срослась с энтропией, наподобие сиамских близнецов.

Еще немного о втором начале

Первое начало термодинамики — это закон сохранения энергии: невозможно создавать энергию; невозможно ее уничтожать; все, что можно сделать, — изменить ее форму. Второе начало еще более обескураживающе: неведение всегда возрастает.

Представьте себе сцену, в которой ныряльщик прыгает с трамплина в бассейн:

потенциальная энергия → кинетическая энергия → тепло.

Он быстро останавливается, а исходная потенциальная энергия превращается в небольшое увеличение тепловой энергии воды. И вместе с этим небольшим нагревом слегка увеличивается энтропия.

Ныряльщик не прочь повторить выступление, но он ленив и не хочет снова подниматься по лестнице на трамплин. Он знает, что энергия никогда не исчезает, так что почему бы не подождать, пока тепло из бассейна не превратится снова в потенциальную энергию — его потенциальную энергию? Ничто в законе сохранения энергии не препятствует обращению его прыжка: чтобы ныряльщика забросило обратно на трамплин, а бассейн немного остыл. При этом бы не только он оказался на трамплине, но и энтропия бассейна уменьшилась, приведя к неожиданному снижению нашего незнания.

К сожалению, наш мокрый приятель освоил только половину курса термодинамики — первую половину. Во второй половине он бы узнал то, что всем нам известно: энтропия всегда возрастает. Энергия всегда деградирует. При преобразованиях между потенциальной, кинетической, химической, другими формами энергии и теплом в выигрыше всегда оказывается тепло, его становится больше, а других организованных, нехаотических форм энергии — меньше. Это второе начало термодинамики: общее количество энтропии в мире всегда возрастает.

Именно поэтому при нажатии тормоза движущийся автомобиль взвизгивает и останавливается, но нажатие тормоза в стоящем автомобиле не приводит его в движение. Беспорядочное тепло земли и воздуха не может преобразоваться в более организованную кинетическую энергию движения автомобиля. По этой же причине тепло моря невозможно направить на решение мировых энергетических проблем. В целом организованная энергия деградирует, превращаясь в тепло, и обратного пути не существует.

Тепло, энтропия, информация — какое отношение эти практические, утилитарные понятия имеют к черным дырам и основаниям физики? Ответ — самое непосредственное. В следующей главе мы увидим, что черные дыры — это фундаментальные резервуары скрытой информации. На самом деле они — самые плотные информационные хранилища в природе. И это может быть лучшим определением черной дыры. Давайте посмотрим, как Якоб Бекенштейн и Стивен Хокинг пришли к пониманию данного ключевого факта.

8
Уилеровские мальчики, или Сколько информации можно затолкать в черную дыру?

В 1972 году, пока я беседовал с Ричардом Фейнманом в кафе «Уэст Энд», принстонский аспирант Якоб Бекенпггейн задавался вопросом: что происходит с теплом, энтропией и информацией в черных дырах? В то время Принстон был мировым центром обучения гравитационных физиков. Это могло быть как-то связано с тем, что здесь более двух десятилетий жил Эйнштейн, хотя к 1972 году с его смерти прошло уже семнадцать лет. Принстонским профессором был один из величайших провидцев современной физики Джон Арчибальд Уилер, вдохновивший на изучение гравитации и размышления о черных дырах многих выдающихся молодых ученых. Среди знаменитых физиков, испытавших глубокое влияние Уилера в тот период, были Чарльз Мизнер, Кип Торн, Клаудио Тейтельбойм и Якоб Бекенпггейн. Уилер, который ранее был научным руководителем диссертации Фейнмана, был, в свою очередь, учеником Эйнштейна. Как и сам великий ученый, он верил, что ключ к законам природы лежит в теории гравитации. Но в отличите от Эйнштейна Уилер, который сотрудничал с Нильсом Бором, верил также и в квантовую механику. Так что Принстон был центром исследований не только по гравитации, но также и по квантовой механике.

В то время теория гравитации была относительно непопулярной тихой заводью теоретической физики. Физики, занимавшиеся элементарными частицами, добивались колоссальныхуспехов в редукционистском марше ко все более тонким структурам. Атомы давно уступили место ядрам, а ядра — кваркам. Обнаружилась истинная роль нейтрино как равноправных партнеров электронов, и выдвигались гипотезы о новых частицах, таких как очарованный кварк, до экспериментального открытия которого оставался год или два. Радиоактивность ядер наконец была адекватно объяснена, и вот-вот предстояло появиться Стандартной модели элементарных частиц, физики, изучающие элементарные частицы, включая и меня, полагали, что есть занятия получше, чем тратить свое время на гравитацию. Были и исключения вроде Стивена Вайнберга, но большинство считало эту тему легкомысленной.

В ретроспективе это пренебрежение к гравитации смотрится крайне близоруким. Почему энергичные лидеры физической науки, смелые пионеры этой области знаний, были столь беспечны в отношении гравитации? Дело в том, что они не могли даже представить себе, чтобы гравитация играла значимую роль во взаимодействии элементарных частиц друг с другом. Представьте, что у вас есть тумблер, позволяющий выключать электрические силы, действующие между ядром атома и электронами, так чтобы только гравитационное притяжение удерживало электроны на своих орбитах. Что случится с атомом, когда вы щелкнете тумблером? Атом немедленно распухнет, поскольку скрепляющая его сила уменьшится. Насколько большим стал бы при этом обычный атом? Значительно больше всей наблюдаемой Вселенной!

Вход
Поиск по сайту
Ищем:
Календарь
Навигация