Книга Неизвестный алмаз. "Артефакты" технологии, страница 12. Автор книги Владимир Карасев

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Неизвестный алмаз. "Артефакты" технологии»

Cтраница 12

Например, рассмотрим возможности формирования сферических или конусообразных поверхностей на его вершинах. Приведем изображения вершин 1 и 2, находящиеся на главной оси октаэдра (рис. 5.2).

На вершине 1 в месте схождения ребер октаэдра наблюдается конфигурация, напоминающая пирамиду (рис. 5.2а). На этой вершине логичнее всего сформировать конусообразную поверхность, повторяющую размеры этой конфигурации. На вершине 2 (рис. 5.2б) схождение ребер происходит не в одну точку. Видимо, по этой причине вершина 2 имеет своеобразную вытянутую форму с характерным абрисом поверхности (рис. 5.3).

Очевидно, на этой вершине целесообразнее сформировать короткофокусную сферическую линзу, тем более что абрис этого образования подсказывает величину ее радиуса.


Неизвестный алмаз. "Артефакты" технологии

Рис. 5.2. Вершина октаэдра 1 (а), вершина октаэдра 2 (б). Стрелками отмечены направления схождения ребер исходного октаэдра


Неизвестный алмаз. "Артефакты" технологии

Рис. 5.3. Характерное образование рельефа поверхности на вершине 2


В результате этих наблюдений можно сконструировать определенную оптическую схему между вершинами 1 и 2 и рассмотреть предполагаемый принцип ее работы. Конусообразная отражающая поверхность вершины 1 направляет волновой поток на вершину 2. Вершина 2 отражает этот поток и проецирует его через фокус F обратно на поверхность конусной линзы вершины 1 и т. д. (рис. 5.4).


Неизвестный алмаз. "Артефакты" технологии

Рис. 5.4. Схема прохождения волновых потоков между вершинами предполагаемого прибора (в разрезе). F— фокус сферической линзы, сформированной на вершине 2


На вершинах октаэдра, расположенных в пространстве (б), наблюдается аналогичная конфигурация вершин. На вершинах 4 и 5 целесообразнее сформировать конусообразные отражающие линзы, а на вершинах 3 и 6 сферические (см. рис. 5.1). Здесь надо отметить главное, что было замечено при анализе формы этого природного октаэдра с точки зрения функционирования волновых энергетических потоков.

В пространстве (б) пирамида 1 развернута относительно пирамиды 2 на небольшой (~5°) угол вокруг главной оси октаэдра по направлению часовой стрелки. Покажем этот природный разворот пирамид на примере вершины 4 (рис. 5.5).

Разворот пирамид привел к деформации вершин, расположенных в пространстве (б), на вполне определенную величину, зависящую от величины этого разворота. Тем самым изменились оптические оси будущих линз. Оси конусов, а также сферических линз развернуты на тот же самый угол, что и наблюдаемый разворот пирамид. В результате этих наблюдений оптическая схема октаэдра приобрела вид, как показано на рис. 5.6.


Неизвестный алмаз. "Артефакты" технологии

Рис. 5.5. Разворот пирамид 1 и 2 октаэдра вокруг его главной оси. Стрелкой отмечена деформация вершины 4, пунктиром – смещение ребер пирамид, точками – пространство (б)


Неизвестный алмаз. "Артефакты" технологии

Рис. 5.6. Оптическая схема октаэдра с учетом разворота пирамид. 1, 2, 3, 4, 5,6 – вершины октаэдра


Анализ других типов алмазного сырья, имеющих форму октаэдра, позволяет сказать, что в его природных конфигурациях либо наблюдается сдвиг (разворот) пирамид в ту или иную сторону, либо этого сдвига нет. На наш взгляд, этот факт является важным при отборе алмазного сырья и составлении алгоритмов воздействия для постановки экспериментов по созданию сильнонеравновесных условий возбуждения кристалла. В данном случае для экспериментов были отобраны два кристалла с разворотом пирамид по часовой стрелке и один кристалл с разворотом пирамид против часовой стрелки.

Таким образом, в пространстве (б) изначально заложена определенная кристаллофизическая аномалия, которая при взаимодействии динамических волновых потоков может сформировать особое волновое поле. Это поле сформировано взаимодействием отражающих поверхностей пирамид 1 и 2. А с учетом указанного разворота пирамид появляется градиент вращения динамического волнового потока в направлении, задаваемом оптическими осями вершин 3, 4, 5, 6. Этот факт может оказаться определяющим при создании условий образования значительных флуктуаций при протекании волновых потоков в объеме алмаза.

При проведении этих экспериментов мы придерживались определенного алгоритма воздействия на алмаз. Этот алгоритм складывался из требований к параметрам создания сильнонеравновесных условий воздействия инструмента на систему кристалла и определенной последовательности технологических операций, учитывающих предполагаемую оптическую схему отобранного конкретно для данного эксперимента природного кристалла алмаза.

Выбранная скорость вращения инструмента а в процессе проведения работ не изменялась. А стабилизированная частота перемещения инструмента ß автоматически увеличивалась от заданной частоты на 0,5 Гц с периодичностью во времени (~10÷12 минут) и через такое же время возвращалась на исходную величину. Тем самым создавался режим цикличности волнового динамического когерентного возбуждения кристалла, обеспечивающий надежное функционирование неравновесных состояний его фононной подсистемы.

Этот алгоритм использовался для формирования трехмерных конфигураций на вершинах каждого природного октаэдра (см. рис. 5.6). В первую очередь это относится к вершинам 1 и 2. Поскольку конус – фигура вращения, то съем материала при волновом возбуждении происходит по его образующей. Особую важность имеет направление перемещения этой образующей относительно оси конуса при его формировании на вершине 1. Например, как видно на рис. 5.6, движение образующей конуса должно происходить против часовой стрелки в сторону направления оптических осей отражающих линз на вершинах 3,4, 5, 6.

Аналогичная ситуация складывается в этом случае и с вершиной 2. Сферическая линза формируется некой малой областью контакта плоского инструмента с выпуклой поверхностью вершины. Необходимо отслеживать направление перемещения этой контактной области по поверхности кристалла в сторону, которая согласуется с оптической схемой конкретного алмаза. Наблюдения показывают, что в данном случае движение этой области должно происходить по направлению часовой стрелки, если смотреть со стороны вершины 2.

Учитывая различное влияние активного инструмента на кристаллографические направления алмаза при формировании конусообразных и сферических линз, учитывая также задачу создания многообразия волнового потока при воздействии на кристалл, была принята определенная последовательность обработки вершин октаэдра в каждом эксперименте.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация