Книга Лорд Кельвин. Классическая термодинамика, страница 27. Автор книги Антонио М. Лальена Рохо

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Лорд Кельвин. Классическая термодинамика»

Cтраница 27

Как Томсон отметил в предисловии, он намеревался выявить ошибки волновой теории света, то есть теории, введенной Максвеллом за 20 лет до этого и все еще вызывавшей сомнения. Основное возражение Томсона было связано с самими абстрактными выводами Максвелла, который никогда не давал ответа на важные для этой теории вопросы: что такое свет? что такое электрические и магнитные поля? как они распространяются в вакууме? из чего состоит сам вакуум?


ЭЛЕКТРОМАГНИТНЫЙ СПЕКТР

Электромагнитное излучение включает в себя целый набор волн, имеющих одно общее свойство: они распространяются в вакууме со скоростью с = = 299792, 458 км/с. Этот набор охватывает волны от радиочастот до гамма-излучения (характеристика некоторых ядерных процессов), включая инфракрасное излучение, видимый свет, ультрафиолетовое излучение и рентгеновские лучи. Для каждого вида излучения характерна собственная энергия Е, представленная в электрон-вольтах на верхней оси прилагаемой шкалы (1 эВ = 1, 60217646 х 10-19 Дж). Излучение энергии выше примерно 102эВ называется ионизирующим, оно используется, среди прочего, в радиотерапии и радиодиагностике. Как и любые другие волны, электромагнитное излучение характеризуется двумя свойствами, связанными с энергией. Одно из них — частота, υ = E/h, где h, значение которого равно 6, 62606896 х 10-34 Дж х с, — это постоянная Планка. Она дает представление о числе колебаний волны в секунду. Значения частоты в Гц показаны на центральной оси шкалы. Другое свойство — это длина волны, равная λ= hc/E, где с — скорость света в вакууме. Значения, которые она может принимать для электромагнитного излучения, приведены в метрах на нижней оси. Видимый свет занимает лишь небольшой фрагмент электромагнитного спектра — приблизительно от 0, 38 мкм, что соответствует фиолетовому, до 0, 78 мкм, что соответствует красному.

Лорд Кельвин. Классическая термодинамика

СПЕКТРАЛЬНЫЕ ЛИНИИ

Оптический спектрометр, или спектроскоп, — это аппарат, позволяющий изучать электромагнитное излучение. В случае с видимым светом в спектрометрах используется оптическая призма или дифракционная решетка - два оптических элемента, которые позволяют разделить луч света, падающий на прибор, на волны различной длины. Как видно на рисунке, когда поток белого света падает на призму, каждый цвет преломляется под разным углом, так что на выходе из призмы волны оказываются разделенными. В 1814 году фон Фраунгофер изучал свет, излучаемый Солнцем, с помощью одного из этих устройств и обнаружил, что на фоне из соответствующих цветов появляется ряд черных линий. Затем он проанализировал свет, испускаемый пламенем, и обнаружил противоположное: на темном фоне появляются цветные линии.


Прогресс в исследованиях

В течение XIX века было накоплено много спектроскопической информации, которая не поддавалась объяснениям с помощью существующих моделей. В 1885 году швейцарский математик и физик Иоганн Якоб Бальмер (1825-1898) нашел эмпирическую формулу, которая описывала длины волн видимого спектра водорода. В 1888 году шведский физик Йоханнес Роберт Ридберг (1854-1919) предложил более общее выражение, позволившее предсказать длины волн спектральных линий многих химических элементов как в видимой области, так и в инфракрасной и ультрафиолетовой. Окончательное объяснение пришло с появлением квантовой механики, согласно которой испускание и поглощение атомами и молекулами материи электромагнитного излучения вызвано тем, что некоторые их электроны переходят между квантовыми уровнями энергии.

Следовательно, фон Фраунгофер наблюдал два типа спектра: спектр поглощения и спектр испускания. В случае с солнечным спектром свет, образованный внутри Солнца, сначала пересекает внешние слои своей звезды, а затем земную атмосферу, пока не доходит до спектроскопа. Материя этих слоев поглощает излучение с энергией, характерной для ее атомов и молекул, вследствие этого в спектре появляются черные линии. В случае с пламенем сжигаемый материал только испускает электромагнитное излучение с конкретной энергией, соответствующей данному материалу, отсюда - светящиеся цветные линии на темном фоне.

Лорд Кельвин. Классическая термодинамика

Однако Томсон ценил результат теории Максвелла: скорости распространения электромагнитного излучения и света в вакууме совпадали и вычислялись на основе двух констант теории - диэлектрической проницаемости и магнитной проницаемости вакуума. Однако взаимодействие материи порождало новые вопросы: почему существуют проводники, диэлектрики и изоляторы? почему материалы по-разному реагируют на магнитное поле? что происходит внутри материала в электромагнитном поле? Максвелл не ответил на эти вопросы, но объяснил многие экспериментальные результаты: он применил две константы, чтобы охарактеризовать каждый вид материала, и учел математические функции, описывающие поля и отношения между ними.

Теория Максвелла также никак не объясняла данные, накопленные спектроскопией. Еще в 1814 году немецкий оптик Йозеф фон Фраунгофер (1787-1826) сконструировал примитивный спектроскоп, позволивший ему выяснить, что в спектре солнечного излучения появляются темные линии с различной длиной волны. Механизм появления этих линий Максвеллу был неизвестен.

В своих лекциях Томсон не только касался этих глубоко дискуссионных проблем, но и часто показывал слушателям причудливые конструкции из различных элементов (стальных кабелей, маятников, деревянных решеток с гирями на конце, маховиков, брусков, пружин и так далее). Индивидуальное поведение каждого элемента было хорошо известно, но все вместе они порождали бесконечное число состояний движения, которые было довольно сложно рассчитать. Цель ученого была той же, что и всегда: найти механическую модель, которая иллюстрировала бы рассматриваемое физическое явление. Эти любопытные конструкции изображали структуру материи, молекулы и их взаимодействие со светом. Поскольку такие модели демонстрировали огромное разнообразие способов поведения, с их помощью можно было рассмотреть поведение любой анализируемой физической системы. И если в каком-нибудь случае это было невозможно сделать, в модель всего лишь следовало добавить дополнительные элементы, сделать «машину» более сложной, расширить ее возможности движения. Так Томсон демонстрировал присущее ему механистическое видение Вселенной.


ИСЧЕЗНОВЕНИЕ ЭФИРА

Второй темой Балтиморских лекций было распространение света в эфире. В предисловии к изданию 1904 года Томсон писал:


«Моя аудитория включала преподавателей физической науки, и с самого начала я почувствовал, что наши встречи будут скорее конференциями между коллегами, где мы попытаемся продвинуть науку, чем просто чтением лекций. Я говорил абсолютно свободно и ничуть не боялся подорвать абсолютную веру моих коллег в эфир и его световые волны; я мог говорить с ними о несовершенстве нашей математики, о недостаточности нашего видения динамических свойств эфира и об обременяющей сложности поиска поля действия для эфира между атомами весомой материи. Мы все чувствовали, что трудностям нужно противостоять, а не избегать их; их сложность нужно учитывать, желая найти решение, если это возможно, но в любом случае можно выразить определенную уверенность в том, что для каждой трудности есть объяснение, даже если мы сами не можем найти его».

Вход
Поиск по сайту
Ищем:
Календарь
Навигация