Книга Мир многих миров. Физики в поисках иных вселенных, страница 12. Автор книги Алекс Виленкин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Мир многих миров. Физики в поисках иных вселенных»

Cтраница 12

Пензиас и Вильсон измерили интенсивность излучения на одной частоте (на которую была настроена их антенна), но теория предсказывала, что оно охватывает целый диапазон частот, а его интенсивность должна следовать простой формуле, выведенной Максом Планком еще на исходе XIX века. Это предсказание было блистательно подтверждено в 1990 году спутниковым экспериментом СОВЕ (Cosmic Microwave Background Explorer — Исследователь космического микроволнового фона), выявившим соответствие с формулой Планка с погрешностью менее одной десятитысячной.

Открытие космического микроволнового излучения было, без сомнения, эпохальным событием для космологии. Этот доступный непосредственному измерению реликт первичного огненного шара придал ученым уверенности в том, что все это им не приснилось, что Вселенная действительно имела горячее начало около 14 миллиардов лет назад. Пензиас и Вильсон получили в 1978 году Нобелевскую премию "за открытие космического микроволнового излучения". За его теоретическое предсказание никакой премии присуждено не было.

Несовершенство творения

Если бы вначале Вселенная была совершенно однородной, она оставалась бы такой и в наши дни. Однородный разреженный газ, заполняющий Вселенную, становился бы все менее плотным, мир вечно оставался бы во тьме, а космическое излучение медленно сдвигалось бы в сторону все более низкочастотных радиоволн. Но одного взгляда на ночное небо достаточно, чтобы убедиться: наша Вселенная не столь безрадостна. Она залита сиянием звезд, которые разбросаны по космосу, образуя иерархию структур. Элементарные единицы этой структуры — галактики — содержат порядка 100 миллиардов звезд. Галактики группируются в скопления, которые в свою очередь образуют сверхскопления, простирающиеся на несколько сотен миллионов световых лет [28] — всего в 100 раз меньше размеров наблюдаемой части Вселенной.

Космологи связывают происхождение всех этих величественных структур с крошечными неоднородностями, существовавшими в первичном огненном шаре. Они могли разрастись до размеров галактик вследствие так называемой гравитационной неустойчивости. Допустим, что в некоторой области пространства плотность чуть выше, чем в ее окружении. Тогда у нее будет более сильное тяготение, и она притянет больше вещества, чем соседние области. В результате контраст плотности будет увеличиваться, и первоначально почти однородное распределение вещества станет превращаться в сильно неоднородное. Космологи считают, что именно так образовались галактики, скопления и сверхскопления. Согласно этой теории, первые галактики сформировались примерно через миллиард лет ПБВ. Звездный свет залил Вселенную, и темная эпоха закончилась. Процесс формирования галактик завершился не так уж давно — когда возраст Вселенной был около 10 миллиардов лет ("всего" четыре миллиарда лет назад).

Можно подумать, что эта история обречена оставаться легендой, поскольку в те времена не было никого, кто мог бы ее подтвердить. Однако, как я уже подчеркивал, мы видим далекие объекты такими, какими они были много лет назад, когда был испущен регистрируемый нами сегодня свет. Так что, изучая более далекие галактики, мы уходим назад во времени. Время движения света от самых далеких галактик, доступных нашему наблюдению, составляет около 13 миллиардов лет, так что мы видим их в то время, когда Вселенной был всего один миллиард лет от роду. По сравнению с грандиозными спиралями, которые окружают нас сейчас, те галактики маленькие и неправильные, что служит признаком их молодости.

Еще более ранние эпохи в истории Вселенной можно наблюдать благодаря космическим микроволнам. Они распространяются без рассеяния почти 14 миллиардов лет с того времени, когда Вселенная стала прозрачной для излучения. Области, где эти волны испытали последнее рассеяние, удалены сейчас на расстояние 40 миллиардов световых лет. [29] (А не 14 миллиардов, как можно было бы подумать, поскольку Вселенная продолжает расширяться.) Таким образом, микроволны приходят к нам с поверхности гигантской сферы радиусом 40 миллиардов световых лет; ее называют поверхностью последнего рассеяния. Излучение, испущенное из областей с чуть более высокой плотностью, должно было преодолеть более сильное тяготение и, приходя к нам, имеет чуть меньшую интенсивность. Как следствие, более плотные области выглядят на микроволновом небе более тусклыми. Составляя карту интенсивности излучения в разных направлениях неба, мы можем получить изображение Вселенной в эпоху последнего рассеяния, когда ей было всего 300 000 лет.

Мир многих миров. Физики в поисках иных вселенных

Рис. 4.2. Микроволновое небо, каким его увидел спутник WMAP.

Впервые карту микроволнового неба построила команда эксперимента СОВЕ в 1992 году. Более подробная карта, которую получил 10 лет спустя спутник WMAP [30], представлена на рисунке 4.2. Темные оттенки серого соответствуют более высокой интенсивности излучения, однако разница между светлыми и темными пятнами составляет всего несколько стотысячных. Это означает, что во время последнего рассеяния Вселенная была почти идеально однородной. Все восхитительные структуры, которые мы сегодня видим на небе, были закодированы в этой аморфной ряби почти однородного космического фона.

Современная история сотворения мира

На рисунке 4.3 представлена история сотворения мира, которую мы до сих пор обсуждали. Эта история подтверждается многочисленными наблюдательными данными, и нет особых оснований сомневаться в том, что в целом она верна. Ее детали продолжают уточняться, а некоторые важные вопросы еще остаются открытыми. Одна из важнейших неизвестных — природа темной материи, которая проявляет себя гравитационным притяжением галактик и скоплений. Имеются веские основания считать, что темная материя состоит не из нуклонов и электронов, а, скорее, из каких-то еще не открытых частиц. От масс и взаимодействия этих частиц зависят детали процесса формирования галактик, но не общая картина, очерченная на рисунке 4.3.

Мир многих миров. Физики в поисках иных вселенных

Рис. 4.3. Краткая история Вселенной.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация