Книга Великая теорема Ферма, страница 4. Автор книги Саймон Сингх

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Великая теорема Ферма»

Cтраница 4

Создание книги было бы невозможно без помощи и участия многих людей. Особенно я хочу поблагодарить Эндрю Уайлса, который, вопреки обыкновению, давал продолжительные и подробные интервью в самый разгар работы над решением проблемы Ферма. За семь лет работы на поприще научной журналистики я не встречал никого, кто был бы так глубоко предан своей работе, и я навсегда сохраню благодарность профессору Уайлсу за его готовность поведать мне свою историю.

Я хочу также поблагодарить других математиков, которые помогли мне написать эту книгу и любезно согласились дать мне подробные интервью. Одни из моих собеседников сами принимали участие в попытках найти доказательство Великой теоремы Ферма, другие были свидетелями исторических событий, происшедших за последние сорок лет. Часы, которые я провел, беседуя и обмениваясь с ними шутливыми замечаниями, доставили мне необычайную радость, и я высоко ценю то терпение и энтузиазм, с которыми они объясняли мне суть многих прекраснейших математических понятий.

Я хотел бы особенно поблагодарить Джона Коутса, Джона Конвея, Ника Каца, Барри Мазура, Кена Рибета, Питера Сарнака, Горо Шимуру и Ричарда Тейлора.

Свою книгу я стремился проиллюстрировать как можно большим числом портретов, чтобы читатель составил лучшее представление о тех, кто принял участие в истории Великой теоремы Ферма. Различные библиотеки и архивы сделали все возможное, что было в их силах, чтобы помочь мне. Я хочу выразить особую благодарность Сьюзен Оукес из Лондонского математического общества, Сандре Камминг из Королевского общества и Яну Стюарту из Варвикского университета. Я признателен также Жаклин Савани из Принстонского университета, Дункану Макагнусу, Джереми Грею Полу Балистеру из Института сэра Исаака Ньютона за их помощь в подборе исследовательского материала. Я благодарен Патрику Уолшу, Кристоферу Поттеру, Бернадетте Альвес, Санджиде О'Коннел и моим родителям за их комментарии и поддержку, оказанную мне в последний год.

Наконец, многие интервью, которые упоминаются в книге, были получены, когда я работал над документальной частью телевизионного фильма о Великой теореме Ферма. Я хочу поблагодарить Би-Би-Си, позволившую мне воспользоваться этим материалом и в особенности Джона Линча, который работал вместе со мной над этим фильмом и способствовал пробуждению моего интереса к Великой теореме Ферма.

Март 1997 г.

Памяти Пакхара Сингха

Глава 1. «Думаю, мне следует остановиться»

Архимеда будут помнить, когда Эсхила забудут, потому что языки умирают, но не математические идеи. Возможно, бессмертие — глупое слово, но, по всей видимости, математик имеет наилучший шанс на бессмертие, что бы оно ни означало.

Г.Г. Харди
Кембридж, 23 июня 1993 года

Это была самая важная лекция по математике столетия. Двести математиков сидели, как завороженные. Лишь четверть из них полностью понимала густую мешанину из греческих букв и алгебраических символов, которая покрывала доску. Остальные присутствовали только для того, чтобы стать очевидцами события, которое, как они надеялись, станет поистине историческим.

Слухи поползли накануне. По электронной почте распространилось сообщение, в котором высказывалось предположение, что намеченная на 23 июня 1993 года лекция может стать кульминацией в поисках доказательства Великой теоремы Ферма — самой знаменитой математической проблемы. Такого рода слух не был чем-то необычным. Великая теорема Ферма часто бывала темой разговоров за чашкой чая, и математики принимались рассуждать о том, кто мог бы найти доказательство. Иногда смутные беседы математиков в помещении для членов колледжей превращали догадки в слухи о якобы найденном доказательстве Великой теоремы Ферма, но из этих слухов никогда ничего не материализовалось.

На этот раз слух был иного рода. Один из аспирантов Кембриджского университета был настолько убежден в истинности сообщения, что решился поставить у букмекеров 10 фунтов стерлингов на то, что доказательство Великой теоремы Ферма будет найдено в течение недели. Но букмекеры сочли, что дело нечисто, и отказались принять заклад. Это был пятый студент, который обратился к ним с аналогичным предложением в тот день. Над поиском доказательства Великой теоремы Ферма лучшие умы бились на протяжении трех столетий, и теперь даже букмекеры начали подозревать, что доказательство скоро будет найдено.

Три доски оказались исписанными, и лектор сделал паузу. Текст с первой доски был стерт, и выкладки продолжились. Каждая строка вычислений становилась крохотной ступенькой, приближавшей к решению проблемы, но вот прошло тридцать минут, а лектор все еще не объявлял, что доказательство завершено. Профессора, заполнившие первые ряды, с нетерпением ожидали заключительной части лекции. Студенты, стоявшие сзади, поглядывали на преподавателей в надежде, что те подскажут, каким может оказаться окончательный «приговор». Присутствуют ли они при изложении полного доказательства Великой теоремы Ферма, или лектор излагает лишь общую схему некоего неполного рассуждения, призванного разрядить всеобщее напряженное ожидание подлинного доказательства.

Лектором был Эндрю Уайлс, сдержанный англичанин, эмигрировавший в 80-х годах в Америку и ставший профессором Принстонского университета, где он заслужил репутацию одного из наиболее одаренных математиков своего поколения. В последние годы Уайлс почти полностью исчез из ежегодного круга конференций и семинаров, и коллеги начали было думать, что Уайлс исчерпал свои возможности как математик. Выгореть дотла для молодых блестящих умов не такая уж редкость. Как заметил математик Альфред Адлер, «математическая жизнь ученого-математика коротка. После того, как ему исполнится лет 25–30, его работа редко становится продуктивнее. Если к этому возрасту мало что сделано, то и потом удается свершить не много».

«Молодые люди должны доказывать теоремы, пожилые — писать книги, — заметил Г.Г. Харди в своей книге «Апология математика». — Ни один математик не должен забывать о том, что математика в большей степени, чем какое-либо другое искусство или наука, — игра молодых людей. В качестве простого примера упомяну о том, что средний возраст избрания в Королевское общество ниже всего у математиков». Блестящий ученик самого Харди — Сриниваса Рамануджан был избран членом Королевского общества в возрасте тридцати одного года, успев совершить в более молодые годы ряд серьезных открытий. Несмотря на весьма слабое формальное образование, полученное им в родной деревне Кумбаконам в Южной Индии, Рамануджан сумел сформулировать теоремы и решить ряд проблем, не поддававшихся усилиям математиков на Западе. В математике опыт, который приходит с возрастом, менее важен, чем интуиция и смелость, свойственные юности. Когда Рамануджан представил Харди свои результаты, кембриджский профессор был настолько поражен, что предложил Рамануджану оставить работу младшего клерка в Южной Индии и переехать в Тринити-колледж, где тот мог бы общаться и взаимодействовать с некоторыми из самых выдающихся специалистов по теории чисел в мире. К сожалению, суровые зимы Восточной Англии оказались непосильным испытанием для Рамануджана. Он заболел туберкулезом и умер в возрасте тридцати трех лет.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация